Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)
a ) \(A=0,6+\left|\dfrac{1}{2}-x\right|\)
Ta có : \(\left|\dfrac{1}{2}-x\right|\ge0\)
\(\Leftrightarrow0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)
Vậy GTNN là 0,6 khi \(x=\dfrac{1}{2}.\)
- Đề ghi ko hiểu ?
b ) \(\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
Ta có : \(\left|2x+\dfrac{2}{3}\right|\ge0\)
\(\Leftrightarrow\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
Vậy GTNN là \(\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)
\(A=0,6+\left|\dfrac{1}{2}-x\right|\)
\(\left|\dfrac{1}{2}-x\right|\ge0\forall x\in R\)
\(A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)
Dấu "=" xảy ra khi:
\(\left|\dfrac{1}{2}-x\right|=0\Rightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
\(\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
Dấu "=" xảy ra khi:
\(\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow2x=-\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
Vì \(\left|2x+\dfrac{2}{3}\right|\ge0\Rightarrow\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
=> MaxB=2/3 => 2x+2/3=0 <=> x=-1/3
Vậy MaxB=2/3 khi x=-1/3
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
\(\text{Ta có : }\left|2x+\dfrac{2}{3}\right|\ge0\text{ }\forall\text{ }x\\ \Rightarrow B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
\(\text{Dấu "=" xảy ra khi : }\left|2x+\dfrac{2}{3}\right|=0\\ \Leftrightarrow2x+\dfrac{2}{3}=0\\ \Leftrightarrow2x=-\dfrac{2}{3}\\ \Leftrightarrow x=-\dfrac{1}{3}\)
Vậy \(x=-\dfrac{1}{3}\)
a) C = 20013 - |5−2x|
do \(-\left|5-2x\right|\le0\forall x\)
=> 20013-\(\left|5-2x\right|\le20013\)
=>A≤20013
=> GTLN C =20013 khi 5-2x=0
=> 2x=5
=> x=\(\dfrac{5}{2}\)
vậy GTLN C = 20013 khi x=\(\dfrac{5}{2}\)
b) D = 7 - \(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\)
do \(-\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le0\forall x\)
=> 7-\(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le7\)
=> D≤7
=> GTLN D =7 khi \(\dfrac{2}{3}+\dfrac{1}{4}x=0\)
=> x=-\(\dfrac{8}{3}\)
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
x =1,5 thì phải