Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
=>x=0
2: \(\Leftrightarrow3x-2x-7-x+6x-5=x+2-x+5=7\)
=>6x-12=7
=>6x=19
hay x=19/6
1: \(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)-3=-6\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=-3\)
\(\Leftrightarrow14x=-3\)
hay x=-3/14
2: \(\Leftrightarrow3x-2x-7-x+6x-5=x+2-x+5\)
=>4x-12=7
=>4x=19
hay x=19/4
1. \(x^3-x^2+x-1=(x^3-x^2)+(x-1)\)
\(=x^2(x-1)+(x-1)=(x^2+1)(x-1)\)
2. \(6x^2y-2xy^2+3x-y=2xy(3x-y)+(3x-y)\)
\(=(3x-y)(2xy+1)\)
3. \(4x^2+1\) thì còn cái gì để phân tích hả bạn? Hay ý bạn là \(4x^4+1\)?
\(4x^4+1=(2x^2)^2+1=(2x^2)^2+1+4x^2-4x^2\)
\(=(2x^2+1)^2-(2x)^2=(2x^2+1-2x)(2x^2+1+2x)\)
4. \(x^2-9x+8=(x^2-x)-(8x-8)\)
\(=x(x-1)-8(x-1)=(x-1)(x-8)\)
5. \(x^3-2x^2y+3xy^2=x(x^2-2xy+3y^2)\)
6. \(x^2-6x+y-y^2\) (sai đề)
7. \(x^2-xy-2x+2y=(x^2-xy)-(2x-2y)\)
\(=x(x-y)-2(x-y)=(x-y)(x-2)\)
1)
\(27+(x-3)(x^2+3x+9)=-x\)
\(\Leftrightarrow 27+(x^3-3^3)=-x\)
\(\Leftrightarrow x^3=-x\)
\(\Leftrightarrow x^3+x=0\Leftrightarrow x(x^2+1)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ x^2+1=0(vl)\end{matrix}\right.\)
Vậy $x=0$
2)
\(-4(x+2)-7(2x-1)+9(4-3x)=30\)
\(\Leftrightarrow -4x-8-14x+7+36-27x=30\)
\(\Leftrightarrow -45x+35=30\Leftrightarrow -45x=-5\)
\(\Rightarrow x=\frac{-5}{-45}=\frac{1}{9}\)
3)
\(x^2-4x+4=0\)
\(\Leftrightarrow x^2-2.2x+2^2=0\)
\(\Leftrightarrow (x-2)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
4)
\((x-1)(x^2+x+1)-x(x+2)(x-2)=5\)
\(\Leftrightarrow (x^3-1^3)-x[(x+2)(x-2)]=5\)
\(\Leftrightarrow x^3-1-x(x^2-2^2)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow 4x-1=5\Rightarrow 4x=6\Rightarrow x=\frac{6}{4}=\frac{3}{2}\)
Tìm x
1) 3(x−1)2−3x(x−5)=1
2) (6x−2)2+(5x−2)2−4(3x−1)(5x−2)=0
3) (2x−5)(2x+5)−1=0
4) 5x2−20=0
Giusp mk vs
\(a,3(x-1)^2-3x(x-5)=1\)
\(\Leftrightarrow3x^2-6x+3-3x^2-15x=1\)
\(\Leftrightarrow\left[3x^2-3x^2\right]+3-\left[15x-6x\right]=1\)
\(\Leftrightarrow3-9x=1\)
\(\Leftrightarrow9x=2\Leftrightarrow x=\frac{2}{9}\)
1)
ĐK: \(x,y\neq 0\); \(x+y\neq 0\)
\(\frac{x^2-y^2}{6x^2y^2}: \frac{x+y}{12xy}\)
\(=\frac{x^2-y^2}{6x^2y^2}. \frac{12xy}{x+y}=\frac{(x-y)(x+y).12xy}{6x^2y^2(x+y)}=\frac{2(x-y)}{xy}\)
2) ĐK: \(x\neq \frac{\pm 1}{2}; 0; 1\)
\(\frac{5x}{2x+1}: \frac{3x(x-1)}{4x^2-1}=\frac{5x}{2x+1}.\frac{4x^2-1}{3x(x-1)}\)
\(=\frac{5x(2x-1)(2x+1)}{(2x+1).3x(x-1)}=\frac{5(2x-1)}{3(x-1)}\)
3) ĐK: \(x\neq \frac{\pm 1}{2}; 0\)
\(\left(\frac{2x-1}{2x+1}-\frac{2x-1}{2x+1}\right): \frac{4x}{10x-5}=0: \frac{4x}{10x-5}=0\)
4) ĐK: \(x\neq \frac{\pm 1}{3}\)
\(\frac{2}{9x^2+6x+1}-\frac{3x}{9x^2-1}=\frac{2}{(3x+1)^2}-\frac{3x}{(3x-1)(3x+1)}\)
\(=\frac{2(3x-1)}{(3x+1)^2(3x-1)}-\frac{3x(3x+1)}{(3x-1)(3x+1)^2}\)
\(=\frac{6x-2-9x^2-3x}{(3x+1)^2(3x-1)}=\frac{-9x^2+3x-2}{(3x-1)(3x+1)^2}\)
5) ĐK: \(x\neq \pm 1; \frac{-7\pm \sqrt{89}}{4}\)
\(\left(\frac{5}{x^2+2x+1}+\frac{2x}{x^2-1}\right): \frac{2x^2+7x-5}{3x-3}\)
\(=\left(\frac{5}{(x+1)^2}+\frac{2x}{(x-1)(x+1)}\right). \frac{3(x-1)}{2x^2+7x-5}\)
\(=\frac{5(x-1)+2x(x+1)}{(x-1)(x+1)^2}. \frac{3(x-1)}{2x^2+7x-5}=\frac{2x^2+7x-5}{(x+1)^2(x-1)}.\frac{3(x-1)}{2x^2+7x-5}\)
\(=\frac{3}{(x+1)^2}\)