K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

Câu a : \(\left(2x-3\right)^2=\left(x-2\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(2x-3-x+2\right)\left(2x-3+x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)

Vậy ........

b ) \(\left(3x+1\right)^2=\left(2x-1\right)^2\)

\(\Leftrightarrow\left(3x+1\right)^2-\left(2x-1\right)^2=0\)

\(\Leftrightarrow\left(3x+1-2x+1\right)\left(3x+1+2x-1\right)=0\)

\(\Leftrightarrow5x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy.............

c ) \(x^3+2x^2+6x+12=0\)

\(\Leftrightarrow x^2\left(x+2\right)+6\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x\left(loại\right)\end{matrix}\right.\) Do \(x^2+6>0\)

Vậy.........

28 tháng 10 2017

a)\(\left(2x-3\right)^2=\left(x-2\right)^2\)

\(2x-3=x-2\)

\(2x-3-x+2=0\)

\(x-1=0\)

\(x=1\)

b)\(\left(3x+1\right)^2=\left(2x-1\right)^2\)

\(3x+1=2x-1\)

\(3x+1-2x+1=0\)

\(x+2=0\)

\(x=-2\)

c)\(x^3+2x^2+6x+12=0\)

\(\left(x^3+2x^2\right)+\left(6x+12\right)=0\)

\(x^2\left(x+2\right)+6\left(x+2\right)=0\)

\(\left(x^2+6\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+6=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-6\\x=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{6}\\x=-2\end{matrix}\right.\)

Vậy \(x=-\sqrt{6}\) hoặc \(x=-2\)

26 tháng 2 2020

a)\(x^2+x-x^2+2=0\)\(\Rightarrow x+2=0\)\(\Rightarrow x=-2\)

b)\(2\left(3x+2\right)-2\left(x+6\right)=0\)

\(\Rightarrow2\left(3x+2-x-6\right)=0\)

\(\Rightarrow2\left(2x-4\right)=0\)

\(\Rightarrow2x-4=0\Rightarrow x=2\)

c)\(4x^4-6x^3-4x^4+6x^3-2x^2=0\)

\(\Rightarrow-2x^2=0\Rightarrow x=0\)

d)\(\left(3x^2-x-2\right)-3\left(x^2-x-2\right)=4\)

\(\Rightarrow3x^2-x-2-3x^2+3x+6=4\)

\(\Rightarrow2x+4=4\Rightarrow2x=0\Rightarrow x=0\)

13 tháng 7 2019

1a) Ta có: -2x2 + 4x - 18 = -2(x2 - 2x + 1) - 16 = -2(x - 1)2 - 16

Ta luôn có: (x - 1)2 \(\ge\)\(\forall\)x --> -2(x - 1)2 \(\le\)\(\forall\)x

=> -2(x - 1)2 - 16 \(\le\)-16 \(\forall\)x

Dấu "=" xảy ra khi: x - 1 = 0 <=> x = 1

Vậy Max của -2x2 + 4x - 18 = -16 tại x = 1

b) Ta có: -2x2 -12x + 12 = -2(x2 + 6x + 9) + 30 = -2(x + 3)2 + 30

Ta luôn có: -2(x + 3)2 \(\le\)\(\forall\)x

=> -2(x + 3)2 + 30 \(\le\)30 \(\forall\)x

Dấu "=" xảy ra khi: x + 3 = 0 <=> x = -3

Vậy Max của -2x2 - 12x + 12 = 30 tại x = -3

13 tháng 7 2019

3.

a)\(x^2+15x-25=x^2+15x+56,25-81,25\) 

  \(=\left(x+7,5\right)^2-81,25\ge-81,25\forall x\) 

Dấu "=" xảy ra<=>\(\left(x+7,5\right)^2=0\Leftrightarrow x=-7,5\) 

Vậy.....

b) \(3x^2-6x-21=3\left(x^2-2x-7\right)\) 

  \(=3\left[\left(x-1\right)^2-8\right]=3\left(x-1\right)^2-24\ge-24\forall x\) 

Dấu "=" xảy ra<=>\(3\left(x-1\right)^2=0\Leftrightarrow x=1\) 

Vậy.....

c)\(x^2-6x+y^2+2y+36=x^2-6x+9+y^2+2y+1+26\) 

 \(=\left(x-3\right)^2+\left(y+1\right)^2+26\ge26\forall x;y\) 

Dấu '=" xảy ra<=> \(\left(x-3\right)^2=0\Leftrightarrow x=3\) và   \(\left(y+1\right)^2=0\Leftrightarrow y=-1\) 

Vậy......

7 tháng 8 2018

x(2x-4)-(x-2)(2x+3)

<=> (2x2 - 4x ) - (2x2 - 3x - 4x -6=0

<=> 2x2 - 4x -2x2 -3x - 4x  + 6 =0

<=> -3x + 6 =0

<=> -3x = 6 

<=> x = -(6/3) = -2

7 tháng 8 2018

Bạn ơi bài mik đâu cs bằng 0 đâu

câu a không có về phải=> k làm dc

b)x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12

<=> 3x^2 +2x +x^2+2x+1 - 4x^2 +25 +12=0

<=> 4x+38=0

=>4x= -38

=>x= -38/4= -19/2

14 tháng 7 2019

Mình ko ghi lại đề , bạn ghi ra xong rồi suy ra như mình nha .

1) \(=>A=\left(6x^2+3x-10x-5\right)-\left(6x^2+14x-9x-21\right)\)

\(=>A=-12x+16\)

2) \(=>B=8x^3+27-8x^3+2=29\)

3)\(=>C=[\left(x-1\right)-\left(x+1\right)]^3=\left(-2\right)^3=-8\)

4)\(=>D=[\left(2x+5\right)-\left(2x\right)]^3=5^3=125\)

5)\(=>E=\left(3x+1\right)^2-\left(3x+5\right)^2+12x+2\left(6x+3\right)\)

\(=>E=\left(3x+1+3x+5\right)\left(3x+1-3x-5\right)+12x+12x+6\)

\(=>E=\left(6x+6\right)\left(-4\right)+24x+6=-24x-24+24x+6=-18\)

6)\(=>F=\left(2x^2+3x-10x-15\right)-\left(2x^2-6x\right)+x+7=-8\)

k cho mik nha , 

6 tháng 3 2020

a) 6x2 - 5x + 3 = 2x - 3x(2 - x)

<=> 6x2 - 5x + 3 = 2x - 6x + 3x2

<=> 6x2 - 5x + 3 = -4x + 3x2

<=> 6x2 - 5x + 3 + 4x - 3x2 = 0

<=> 3x2 - x + 3 = 0

=> Pt vô nghiệm

b) 25x2 - 9 = (5x + 3)(2x + 1)

<=> 25x2 - 9 = 10x2 + 5x + 6x + 3

<=> 25x2 - 9 = 10x2 + 11x + 3

<=> 25x2 - 9 - 10x2 - 11x - 3 = 0

<=> 15x2 - 12 - 11x = 0

<=> 15x2 + 9x - 20x - 12 = 0

<=> 3x(5x + 3) - 4(5x + 3) = 0

<=> (5x + 3)(3x - 4) = 0

<=> 5x + 3 = 0 hoặc 3x - 4 = 0

<=> x = -3/5 hoặc x = 4/3