K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

\(3x^3-3x^2-3x-5=0\) (1)

Đặt \(t=x-\dfrac{1}{3}\Rightarrow x=\dfrac{1}{3}+t\) , ta được:

\(\left(1\right)\Leftrightarrow3\left(\dfrac{1}{3}+t\right)^3-3\left(\dfrac{1}{3}+t\right)^2-3\left(\dfrac{1}{3}+t\right)-5=0\)\(\Leftrightarrow3t^3-4t-\dfrac{56}{9}=0\) (2)

Đặt \(y=\dfrac{t}{\dfrac{4\sqrt{3}}{3}}\Rightarrow t=\dfrac{4\sqrt{3}}{3}y\)

\(\Rightarrow\left(2\right)\Leftrightarrow3\left(\dfrac{4\sqrt{3}}{3}y\right)^3-4\left(\dfrac{4\sqrt{3}}{3}y\right)^2-\dfrac{56}{9}=0\)\(\Leftrightarrow4y^3-3y^2=\dfrac{7\sqrt{3}}{6}\)

Đặt \(a=\sqrt[3]{\dfrac{7\sqrt{3}}{6}+\sqrt{\dfrac{7\sqrt{3}}{6}^2+1}}\)\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3-3\alpha=\dfrac{7\sqrt{3}}{6}\)

Vậy \(\alpha=y\) là nghiệm của pt

\(\Rightarrow y=\left(\sqrt[3]{\dfrac{7\sqrt{3}}{6}+\sqrt{\dfrac{7\sqrt{3}}{6}^2+1}}\right)\left(\sqrt[3]{\dfrac{7\sqrt{3}}{6}-\sqrt{\dfrac{7\sqrt{3}}{6}^2+1}}\right)\)\(=0,5034424461\)

\(\Rightarrow t=\dfrac{4\sqrt{3}}{3}y=1,162650527\)

\(\Rightarrow x=\dfrac{1}{3}+t=1,49598386\)

25 tháng 7 2017

3x3-3x2-3x-5=0

x -3x -5=0

x-3x=5

-2x=5

x=\(\dfrac{-5}{2}\)

15 tháng 11 2017

2)

a) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy x=0 ; x=-1 ; x=1

b) \(x^2-x+\dfrac{1}{4}=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

15 tháng 11 2017

1)

a) \(\left(x-2\right)\left(x^2+3x+4\right)\)

\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)

\(\Leftrightarrow x^3+x^2-2x-8\)

b) \(\left(x-2\right)\left(x-x^2+4\right)\)

\(=x^2-x^3+4x-2x+2x^2-8\)

\(=3x^2-x^3+2x-8\)

c) \(\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^4+2x^3-x^2-2x\)

d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)

\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)

\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)

\(=17x^2+5x-6-6x^3\)

21 tháng 7 2016

giải mệt cả người mà có ai biết ơn đâu

24 tháng 6 2018

\(a,5x^2-3x\left(x-2\right)\)

\(=5x^2-3x^2+6x\)

\(=2x^2+6x\)
\(b,3x\left(x-5\right)-5x\left(x+7\right)\)
\(=3x^2-15x-5x^2-35x\)

\(=-2x^2-50x\)

c, Đề ko rõ Yang Yang

\(d,7x\left(x-5\right)+3\left(x-2\right)\)

\(=7x^2-35x+3x-6\)

\(=7x^2-32x-6\)

\(e,5-4x\left(x-2\right)+4x^2\)

\(=5-4x^2+8x+4x^2\)

\(=5+8x\)

\(f,4x\left(2x-3\right)-5x\left(x-2\right)\)

\(=8x^2-12x-5x^2+10x\)

\(=3x^2-2x\)

8 tháng 1 2018

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

5 tháng 10 2019

rút gọn biểu thức

a) \(4x^2-\left(x+3\right).\left(x-5\right)+x\)

\(=4x^2-\left(x^2-5x+3x-15\right)+x\)

\(=4x^2-x^2+5x-3x+15+x\)

\(=3x^2+3x+15.\)

b) \(x.\left(x-5\right)-3x.\left(x+1\right)\)

\(=x^2-5x-\left(3x^2+3x\right)\)

\(=x^2-5x-3x^2-3x\)

\(=-2x^2-8x.\)

d) \(\left(x+3\right).\left(x-1\right)-\left(x-7\right).\left(x-6\right)\)

\(=x^2-x+3x-3-\left(x^2-6x-7x+42\right)\)

\(=x^2-x+3x-3-x^2+6x+7x-42\)

\(=15x-45.\)

Chúc bạn học tốt!

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)