Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=42\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=42\)
\(\Leftrightarrow x^3-25x-x^3-8=42\)
\(\Leftrightarrow-25x-8=42\)
\(\Leftrightarrow-25x=42+8\)
\(\Leftrightarrow-25x=50\)
\(\Leftrightarrow x=-\dfrac{50}{25}=-2\)
Ta có: \(x+2\sqrt{2}.x^2+2x^3=0\)
\(\Leftrightarrow x\left(1+2\sqrt{2}.x+2x^2\right)=0\)
\(\Leftrightarrow x\left[1^2+2.x\sqrt{2}.1+\left(x\sqrt{2}\right)^2\right]=0\)
\(\Leftrightarrow x\left(1+x\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+x\sqrt{2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{\sqrt{2}}\end{cases}}\)
Vậy\(x\in\left\{0;\frac{-1}{\sqrt{2}}\right\}\)
\(x+2\sqrt{2}x^2+2x^3=0\)
\(x\left(1+2\sqrt{2}x+2x^2\right)=0\)
\(x\left(2\sqrt{2}x+1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2\sqrt{2}x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2x\sqrt{2}}\end{cases}}\)
\(a,\Rightarrow x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(x-x+3\right)=0\\ \Rightarrow3\left(x+3\right)=0\Rightarrow x=-3\\ b,A:B=\left(2x^2-x+4x-2\right):\left(2x-1\right)\\ =\left[x\left(2x-1\right)+2\left(2x-1\right)\right]:\left(2x-1\right)\\ =x+2\)
\(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=17\)
\(\Rightarrow x\left(x^2-25\right)-\left(x^3+8\right)=17\)
\(\Rightarrow x^3-25x-x^3-8=17\)
\(\Rightarrow25x=-25\Rightarrow x=-1\)
\(x^4-8=2x^2-12x\)
\(\Rightarrow x^4-8-2x^2+12x=0\)
\(\Rightarrow x^4-8-2x\left(x-6\right)=0\)
Từ đây bạn khai triển bằng cách đặt nhân tử chung nhé!
Chúc bạn học tốt!