Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)
\(x=\frac{\left(\frac{4}{5}-\frac{1}{2}\right)}{\frac{2}{3}}\)
\(x=\frac{9}{20}\)
b) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\left|x+\frac{3}{4}\right|=0+\frac{1}{2}\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-1}{4}\\x=\frac{-5}{4}\end{cases}}}\)
Vậy x=-1/4 hoặc x=-5/4
c) \(\left(x+\frac{1}{3}\right)^3=\frac{-1}{8}\)
\(\Leftrightarrow x+\frac{1}{3}=\frac{-1}{8}=\frac{\left(-1\right)^3}{2^3}=\frac{-1}{2}\)
\(x=\frac{-1}{2}-\frac{1}{3}\)
\(x=\frac{-5}{6}\)
\(\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)
\(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}\)
\(\frac{2}{3}x=\frac{3}{10}\)
\(x=\frac{3}{10}:\frac{2}{3}\)
\(x=\frac{9}{20}\)
b) l x + 3/4 l - 1/2 = 0
l x + 3/4 l = 1/2
TH1 : \(x+\frac{3}{4}\le0\) TH2: \(x+\frac{3}{4}\ge0\)
=> \(x+\frac{3}{4}=-\frac{1}{2}\) => \(x+\frac{3}{4}=\frac{1}{2}\)
\(x=-\frac{1}{2}-\frac{3}{4}\) \(x=\frac{1}{2}-\frac{3}{4}\)
\(x=-\frac{5}{4}\) \(x=-\frac{1}{4}\)
c) ( x + 1/3 )3 = ( -1/8 )
( x + 1/3 ) 3 = ( -1/3 )3
=> x + 1/3 = -1/3
x = -1/3 - 1/3
x = -2/3
\(\frac{x}{1}\)= \(\frac{3}{x+2}\)
=> x (x+2) = 3
=> x+2 = 3
=> x = 1
= (x2+1)3 - [(x2)3 + 13]=0
(x6+ 3.x4 +3.x2 +1) - (x6+1) =0
x6+3.x4+3.x2+1-x6-1=0
3.x4+3.x2=0
3.x2(x2+1)=0
\(\orbr{\begin{cases}3.x^2=0\\x^2+1=0\end{cases}}\orbr{ }\Rightarrow\orbr{\begin{cases}x=0\\x^2=-1\left(loai\right)\end{cases}}\)
vay x=0
Ta có : \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
\(\Rightarrow\frac{1+2y}{18}=\frac{1+6y}{6x}=\frac{1+2y+1+6y}{18+6x}=\frac{2+8y}{18+6x}=\frac{2\left(1+4y\right)}{2\left(9+3x\right)}=\frac{1+4y}{9+3x}\)
\(\Rightarrow\frac{1+4y}{24}=\frac{1+4y}{9+3x}\)
\(\Rightarrow9+3x=24\)
\(\Rightarrow3x=24-9\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=15:3\)
\(\Rightarrow x=5\)
Với mọi \(x\in R\)ta có:
\(\left|x\right|+\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|\ge0\Leftrightarrow6x\ge0\Leftrightarrow x\ge0\)
Với \(x\ge0\)thì: \(\left|x\right|=x;\left|x+1\right|=x+1;\left|x+2\right|=x+2;\left|x+3\right|=x+3;\left|x+4\right|=x+4\)
\(pt\Leftrightarrow5x+10=6x\Leftrightarrow x=10\)