Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2}{x-5}< 0\) <=> x+2 và x-5 trái dấu
Mà x+2 > x-5
Nên x+2 > 0 và x-5 < 0
=>x > -2 và x < 5
Vậy -2 <x <5
x + 1 : 0,75 = 1,4 : 0,25
<=> \(x+\dfrac{4}{3}=5,6\)
<=> \(x=\dfrac{64}{15}\)
Ta có:
\(xy=x:y\Leftrightarrow xy=x.\dfrac{1}{y}\)
\(\Leftrightarrow xy-x.\dfrac{1}{y}=0\)
\(\Leftrightarrow x\left(y-\dfrac{1}{y}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y-\dfrac{1}{y}=0\end{matrix}\right.\)
TH1: \(x=0\)
\(\Rightarrow x-y=xy=0\Leftrightarrow x=y=0\left(ktm\right)\)
TH2:\(y-\dfrac{1}{y}=0\Leftrightarrow\dfrac{y^2-1}{y}=0\)
\(\Leftrightarrow y^2-1=0\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
Khi \(y=1\) thì \(x-1=x\)(không có \(x\) thoả mãn)
Khi \(y=-1\) thì \(x+1=-x\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)(tm)
Vậy \(x=-\dfrac{1}{2}\) và \(y=-1\)
x³ - x² - x = 1/3
<=> x³ = x² + x + 1/3
<=> 3x³ = 3(x² + x + 1/3)
<=> 3x³ = 3x² + 3x + 1
<=> 3x³ + x³ = x³ + 3x² + 3x + 1
<=> 4x³ = (x + 1)³
<=> ³√(4x³) = ³√(x + 1)³
<=> ³√4.x = x + 1
<=> ³√4.x - x = 1
<=> x(³√4 - 1) = 1
<=> x = 1/(³√4 - 1)
Ta có \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x+2\right)\left(x-2\right)\)
\(\Rightarrow x^2+2x-3=x^2-4\)
\(\Rightarrow x^2-x^2+2x=-4+3\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\)
Vì x, y > 0
Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)( k > 0 )
x2 - y2 = 4
<=> ( 5k )2 - ( 4k )2 = 4
<=> 25k2 - 16k2 = 4
<=> 9k2 = 4
<=> k2 = 4/9
<=> k = 2/3 ( vì k > 0 )
=> \(\hept{\begin{cases}x=5\cdot\frac{2}{3}=\frac{10}{3}\\y=4\cdot\frac{2}{3}=\frac{8}{3}\end{cases}}\)
heeweghjk/k uubunnnnnnnnnnbhtytcvbyu74xui b bbbbfk44xxxxxxxxxxxxxxxxxxxx56yh6 6rrrrr6r iiiii6irixmx rj 6 5556666666crlxxx8 rr6xxxxxxxxxxxxxxtr4444 tyjrttttttttttttttttr5xyyu
\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)
\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)
Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)
Ta có:
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)
\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)
\(\frac{x-3}{x+5}=\frac{5}{7}\Rightarrow7\cdot\left(x-3\right)=5\cdot\left(x+5\right)\Rightarrow7x-21=5x+25\Rightarrow7x-5x=25+21\Rightarrow2x=46\Rightarrow x=\frac{46}{2}=23\)
\(x-\frac{3}{4}=\frac{2}{-6}\)
\(x-\frac{3}{4}=\frac{-1}{3}\)
\(x=\frac{-1}{3}+\frac{3}{4}\)
\(x=\frac{5}{12}\)
mk giải lun ak
x=2/-6+3/4
x=5/12
/ là dấu phân số nha bạn
k mk
\(\Rightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}-x+\frac{1}{6}=0\)
\(\Rightarrow3x+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
k cho minh
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}=x+\frac{1}{6}\)
\(\Leftrightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}-x-\frac{1}{6}=0\)
\(\Leftrightarrow3x+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}=0\)
Tính ra nhé !
\(x^3-x=0\Rightarrow x\left(x^2-1\right)=0\)
TH1: \(x=0\)
TH2: \(x^2-1=0\Rightarrow x^2=1\Rightarrow x=\sqrt{1}\)hoặc \(x=-\sqrt{1}\)