Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{1974}+\frac{x+2}{1973}+\frac{x+3}{1972}=-3\)
\(=>\left(\frac{x+1}{1974}+1\right)+\left(\frac{x+2}{1973}+1\right)+\left(\frac{x+3}{1972}+1\right)=-3+3\)
\(=>\frac{x+1975}{1974}+\frac{x+1975}{1973}+\frac{x+1975}{1972}=0\)
\(\left(x+1975\right)\left(\frac{1}{1974}+\frac{1}{1973}+\frac{1}{1972}\right)=0\)
\(=>x+1975=0=>x=-1975\)
Vậy \(x=-1975\)
\(\frac{x+1}{1974}+\frac{x+2}{1973}+\frac{x+3}{1972}=-3\)
\(\Leftrightarrow\left(\frac{x+1}{1974}+1\right)+\left(\frac{x+2}{1973}+1\right)+\left(\frac{x+3}{1972}+1\right)=0\)
\(\Leftrightarrow\frac{x+1975}{1974}+\frac{x+1975}{1973}+\frac{x+1975}{1972}=0\)
\(\Leftrightarrow\left(x+1975\right)\left(\frac{1}{1974}+\frac{1}{1973}+\frac{1}{1972}\right)=0\)
\(\Leftrightarrow x+1975=0\)
\(\Leftrightarrow x=-1975\)
\(\frac{x+1}{1974}+\frac{x+2}{1973}+\frac{x+3}{1972}=-3\)
\(\Rightarrow\left(\frac{x+1}{1974}+1\right)+\left(\frac{x+2}{1973}+1\right)+\left(\frac{x+3}{1972}+1\right)=0\)
\(\Rightarrow\frac{x+1+1974}{1974}+\frac{x+2+1973}{1973}+\frac{x+3+1972}{1972}=0\)
\(\Rightarrow\frac{x+1975}{1974}+\frac{x+1975}{1973}+\frac{x+1975}{1972}=0\)
\(\Rightarrow\left(x+1975\right)\frac{1}{1974}+\frac{1}{1973}+\frac{1}{1972}=0\)
Mà \(\frac{1}{1974}+\frac{1}{1973}+\frac{1}{1972}\ne0\)
\(\Rightarrow x+1975=0\)
\(\Rightarrow x=0+1975\)
\(\Rightarrow x=1975\)
Vậy \(x=1975\)
b) phần này làm tương tự phần a nha, chuyển -3 sang vế bên trái r cộng từng p.số vs 1 và sau đó nhóm tử số chung ra ngoài ^^
a) \(\frac{2}{7}x-\frac{1}{3}x=\frac{5}{21}\)
\(\left(\frac{2}{7}-\frac{1}{3}\right)x=\frac{5}{21}\)
\(\left(-\frac{1}{21}\right)x=\frac{5}{21}\Rightarrow x=\frac{5}{21}:-\frac{1}{21}=-5\)
b) \(\frac{x+1}{1974}+\frac{x+2}{1973}+\frac{x+3}{1972}=-3\)
\(\left(\frac{x+1}{1974}+1\right)+\left(\frac{x+2}{1973}+1\right)+\left(\frac{x+3}{1972}+1\right)=-3+3\)
\(\frac{x+1975}{1974}+\frac{x+1975}{1973}+\frac{x+1975}{1972}=0\)
\(\left(x+1975\right)\left(\frac{1}{1974}+\frac{1}{1973}+\frac{1}{1972}\right)=0\)
Mà \(\frac{1}{1974}+\frac{1}{1973}+\frac{1}{1972}>0\Rightarrow x+1975=0\)
\(x=-1975\)
196345−x+196840−x+197335−x+197830−x=−4
\left(\frac{45-x}{1963}+1\right)+\left(\frac{40-x}{1968}+1\right)+\left(\frac{35-x}{1973}+1\right)+\left(\frac{30-x}{1978}+1\right)=0(196345−x+1)+(196840−x+1)+(197335−x+1)+(197830−x+1)=0
\frac{2008-x}{1963}+\frac{2008-x}{1968}+\frac{2008-x}{1973}+\frac{2008-x}{1978}=019632008−x+19682008−x+19732008−x+19782008−x=0
\left(2008-x\right)\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)=0(2008−x)(19631+19681+19731+19781)=0
=> 2008 - x = 0 ( vì 1/ 1963 + ... khác 0 )
=> x = 2008
Ta có : \(\frac{45-x}{1963}+\frac{40-x}{1968}+\frac{35-x}{1973}+\frac{30-x}{1978}+4=0\)
\(\Leftrightarrow\frac{45-x}{1963}+1+\frac{40-x}{1968}+1+\frac{35-x}{1973}+1+\frac{30-x}{1978}=0\)
\(\Leftrightarrow\frac{2008-x}{1963}+\frac{2008-x}{1968}+\frac{2008-x}{1973}+\frac{2008-x}{1978}=0\)
\(\Leftrightarrow\left(2008-x\right)\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)=0\)
Vì \(\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)\ne0\)
Nên : 2008 - x = 0
<=> x = 2008
Vậy x = 2008
\(\frac{x+1}{1974}+1+\frac{x+2}{1973}+1+\frac{x+3}{1972}+1=-3+3\)
\(\Leftrightarrow\frac{x+1975}{1974}+\frac{x+1975}{1973}+\frac{x+1975}{1972}=0\)
\(\Leftrightarrow\left(x+1975\right)\left(\frac{1}{1974}+\frac{1}{1973}+\frac{1}{1972}\right)=0\)
=> x + 1975 = 0. => x = -1975 ( vì 1/1974 + 1/1973 + 1/1972 khác 0 )