K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2021

(x - 2)(x+ 2x + 4) + 2(x2 - 4) - 5(x - 2) = 0

(x - 2)(x + 2)2 + 2(x - 2)(x+2) - 5(x - 2) = 0

(x - 2)[(x+2)2 + 2(x+2) - 5]= 0

(x - 2)[(x + 2)2 + 2(x + 2) + 1 - 6] = 0

( x - 2)[(x + 2 + 1)2 - 6] = 0

(x - 2)[(x + 3)2 - 6] = 0

(x - 2)(x + 3 - \(\sqrt{6}\))(x + 3 + \(\sqrt{6}\)) = 0

TH1. x - 2 = 0 <=> x = 2

TH2. x + 3 - \(\sqrt{6}\) = 0 <=> x = \(\sqrt{6}-3\)

TH3. x + 3 + \(\sqrt{6}\) = 0 <=> x = \(-\sqrt{6}-3\)

S = {2; \(\sqrt{6}-3\)\(-\sqrt{6}-3\)}

12 tháng 7 2016

a. \(x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)=17\)

\(x^3-25x-\left(x^3+8\right)=17\)

\(x^3-25x-x^3-8=17\)

\(-25x=25\)

\(x=-1\)

12 tháng 7 2016

c. \(6x^2-\left(6x^2-4x+15x-10\right)=7\)

\(6x^2-6x^2-11x+10=7\)

\(-11x=-3\)

\(x=\frac{3}{11}\)

14 tháng 8 2020

a) 16x^2 - (4x - 5)^2 = 15

<=> 16x^2 - 16x^2 + 40x - 25 = 15

<=> 40x = 40

<=> x = 1

b) (2x + 3)^2 - 4(x - 1)(x + 1) = 49

<=> 4x^2 + 12x + 9 - 4x^2 - 4x + 4x + 4 = 49

<=> 12x + 13 = 49

<=> 12x = 36

<=> x = 3

c) (2x + 1)(1 - 2x) + (1 - 2x)^2 = 18

<=> 1 - 4x^2 + 1 - 4x + 4x^2 = 18

<=> 2 - 4x = 18

<=> -4x = 16

<=> x = -4

d)2(x + 1)^2 - (x - 3)(x + 3) - (x - 4)^2 = 0

<=> 2x^2 + 4x + 2 - x^2 + 3^2 - x^2 + 8x - 16 = 0

<=> 12x - 5 = 0

<=> 12x = 5

<=> x = 5/12

e) (x - 5)^2 - x(x - 4) = 9

<=> x^2 - 10x + 25 - x^2 + 4x = 9

<=> -6x + 25 = 9

<=> -6x = 9 - 25

<=> -6x = -16

<=> x = -16/-6 = 8/3

f) (x - 5)^2 + (x - 4)(1 - x) = 0

<=> x^2 - 10x + 25 + x - x^2 - x - 4 + 4x = 0

<=> -5x + 21 = 0

<=> -5x = -21

<=> x = 21/5

1 tháng 9 2020

Bài 1 : 

a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)

TH1 : \(x-3=2\Leftrightarrow x=5\)

TH2 : \(x-3=-2\Leftrightarrow x=1\)

b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

TH1 : \(x-6=0\Leftrightarrow x=6\)

TH2 : \(x+4=0\Leftrightarrow x=-4\)

c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)

\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)

d, tương tự 

1 tháng 9 2020

Bài 2 :

 \(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)

Thay x + y = -9 ta có : 

\(\left(-9\right)^2-6\left(-9\right)-5=130\)

26 tháng 8 2019

a) \(3x^3-6x^2=0\)

\(3x^2\left(x-2\right)=0\)

\(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)

\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) \(x\left(x-4\right)-12x+48=0\)

\(x^2-4x-12x+48=0\)

\(x^2-16x+48=0\)

\(\left(x-12\right)\left(x-4\right)=0\)

\(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)

\(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)

c) Viết thiếu nha :v

d) \(2x\left(x-5\right)-x\left(2x+3\right)=16\)

\(2x^2-10x-x^2-2x^2-3x=16\)

\(-13x=16\)

\(x=-\frac{16}{13}\)

e) \(\left(4x^2-1\right)-\left(x-1\right)^2=-3\)

\(4x^2-1-x^2+2x-1=-3\)

\(3x^2-2+2x=-3\)

\(3x^2-2+2x+3=0\)

\(3x^2+1+2x=0\)

Vì \(3x^2+1+2x>0\)nên: 

\(x\in\varnothing\)

26 tháng 8 2019

A) 3x3 - 6x2 = 0

=> 3x2(x - 2) = 0

=> \(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) x(x - 4) - 12x + 48 = 0

=> x(x - 4) - 12(x - 4) = 0

=> (x - 12)(x - 4) = 0

=> \(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)

c) x(x - 4) - (x2 - 8) = x2 - 4x - x2 + 8 = 4x + 8 

21 tháng 8 2021

a, \(\left(2x+1\right)\left(1-2x\right)+\left(1-2x\right)^2=0\)

\(\Leftrightarrow\left(1-2x\right)\left(2x+1+1-2x\right)=0\Leftrightarrow x=\frac{1}{2}\)

b, \(2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)

\(\Leftrightarrow2\left(x^2+2x+1\right)-\left(x^2-9\right)-\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow2x^2+4x+2-x^2+9-x^2+8x-16=0\Leftrightarrow12x-5=0\Leftrightarrow x=\frac{5}{12}\)

c, \(\left(x-5\right)^2-x\left(x-4\right)=9\Leftrightarrow x^2-10x+25-x^2+4x=9\)

\(\Leftrightarrow-6x+16=0\Leftrightarrow x=\frac{8}{3}\)

d, \(\left(x-5\right)^2+\left(x-4\right)\left(1-x\right)=0\)

\(\Leftrightarrow x^2-10x+25+x-x^2-4+4x=0\)

\(\Leftrightarrow-5x+21=0\Leftrightarrow x=\frac{21}{5}\)

6 tháng 10 2020

a) \(4x^3-9x=0\)

\(\Leftrightarrow x\left(4x^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2=9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{3}{2}\end{cases}}\)

b) \(3x\left(x-2\right)-5x+10=0\)

\(\Leftrightarrow\left(3x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)

c) \(4x\left(x+3\right)-x^2+9=0\)

\(\Leftrightarrow4x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(3x+3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)

d) \(\left(2x+5\right)\left(x-4\right)=\left(x-4\right)\left(5-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow3x\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

6 tháng 10 2020

e) \(16x^2-25=\left(4x-5\right)\left(2x+1\right)\)

\(\Leftrightarrow\left(4x-5\right)\left(4x+5\right)-\left(4x-5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-2\end{cases}}\)

f) \(\left(x+\frac{1}{5}\right)^2=\frac{64}{9}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{8}{3}\\x+\frac{1}{5}=-\frac{8}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{37}{15}\\x=-\frac{43}{15}\end{cases}}\)

g) \(9\left(x+2\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}3x+6=x+3\\3x+6=-x-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{9}{4}\end{cases}}\)

6 tháng 10 2020

a) 4x3 - 9x = 0

<=> x( 4x2 - 9 ) = 0

<=> x( 2x - 3 )( 2x + 3 ) = 0

<=> x = 0 hoặc 2x - 3 = 0 hoặc 2x + 3 = 0

<=> x = 0 hoặc x = ±3/2

b) 3x( x - 2 ) - 5x + 10 = 0

<=> 3x( x - 2 ) - 5( x - 2 ) = 0

<=> ( x - 2 )( 3x - 5 ) = 0

<=> x - 2 = 0 hoặc 3x - 5 = 0

<=> x = 2 hoặc x = 5/3

c) 4x( x + 3 ) - x2 + 9 = 0

<=> 4x( x + 3 ) - ( x2 - 9 ) = 0

<=> 4x( x + 3 ) - ( x - 3 )( x + 3 ) = 0

<=> ( x + 3 )[ 4x - ( x - 3 ) ] = 0

<=> ( x + 3 )( 4x - x + 3 ) = 0

<=> ( x + 3 )( 3x + 3 ) = 0

<=> x + 3 = 0 hoặc 3x + 3 = 0

<=> x = -3 hoặc x= -1

d) ( 2x + 5 )( x - 4 ) = ( x - 4 )( 5 - x )

<=> ( 2x + 5 )( x - 4 ) - ( x - 4 )( 5 - x ) = 0

<=> ( x - 4 )[ ( 2x + 5 ) - ( 5 - x ) ] = 0

<=> ( x - 4 )( 2x + 5 - 5 + x ) = 0

<=> ( x - 4 ).3x = 0

<=> x - 4 = 0 hoặc 3x = 0

<=> x = 4 hoặc x = 0

e) 16x2 - 25 = ( 4x - 5 )( 2x + 1 )

<=> ( 4x - 5 )( 4x + 5 ) - ( 4x - 5 )( 2x + 1 ) = 0

<=> ( 4x - 5 )[ ( 4x + 5 ) - ( 2x + 1 ) ] = 0

<=> ( 4x - 5 )( 4x + 5 - 2x - 1 ) = 0

<=> ( 4x - 5 )( 2x + 4 ) = 0

<=> 4x - 5 = 0 hoặc 2x + 4 = 0

<=> x = 5/4 hoặc x = -2

f) ( x + 1/5 )2 = 64/9

<=> ( x + 1/5 )2 = ( ±8/3 )2

<=> x + 1/5 = 8/3 hoặc x + 1/5 = -8/3

<=> x = 37/15 hoặc x = -43/15

g) 9( x + 2 )2 = ( x + 3 )2

<=> 32( x + 2 )2 - ( x + 3 )2 = 0

<=> [ 3( x + 2 ) ]2 - ( x + 3 )2 = 0

<=> ( 3x + 6 )2 - ( x + 3 )2 = 0

<=> [ ( 3x + 6 ) - ( x + 3 ) ][ ( 3x + 6 ) + ( x + 3 ) ] = 0

<=> ( 3x + 6 - x - 3 )( 3x + 6 + x + 3 ) = 0

<=> ( 2x + 3 )( 4x + 9 ) = 0

<=> 2x + 3 = 0 hoặc 4x + 9 = 0

<=> x = -3/2 hoặc x = -9/4