Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\left(DK:x\ne-\frac{2}{5};x\ne-\frac{1}{5}\right)\)
\(\Rightarrow\left(2x+3\right)\left(10x+2\right)=\left(4x+5\right)\left(5x+2\right)\Rightarrow20x^2+34x+6=20x^2+33x+10\Rightarrow x=4\)(thoả mãn)
Vậy x = 4
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Leftrightarrow\left(2x+3\right)\left(10x+2\right)=\left(5x+2\right)\left(4x+5\right)\)
\(\Leftrightarrow2x\left(10x+2\right)+3\left(10x+2\right)=5x\left(4x+5\right)\)
\(\Leftrightarrow20x^2+4x+20x+6=20x^2+25x+9x+10\)
\(\Leftrightarrow20x^2+4x+20x+6-\left(20x^2+25x+9x+10\right)=0\)\(\Rightarrow20x^2+24x+6-\left(20x^2+34x+10\right)=0\)
\(\Leftrightarrow-10x-4=0\)
\(\Leftrightarrow-10x=4\)
\(\Leftrightarrow x=-\frac{4}{10}\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+6-4}=\frac{2x-2+3y-6-z+3}{4+6-4}\)
\(=\frac{\left(2x+3y-z\right)+\left(-2+6+3\right)}{6}=\frac{50+\left(-5\right)}{6}=\frac{45}{6}=7,5\)
\(\frac{x-1}{2}=7,5\Rightarrow x-1=15\Rightarrow x=16\)
\(\frac{y-2}{3}=7,5\Rightarrow y-2=24,5\Rightarrow y=20,5\)
\(\frac{z-3}{4}=7,5\Rightarrow z-3=30\Rightarrow z=33\)
a) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)\(5\)
=> \(\frac{2}{3}-\left(\frac{1}{3}x-\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)=5\)
=>\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
=>\(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5\)
=>\(\frac{2}{3}-\frac{4}{3}x=5\)
=>\(\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)
=>\(x=-\frac{13}{3}:\frac{4}{3}=-\frac{13}{4}\)
b)\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
=>\(4x-x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)
=> \(3x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)
=>\(x=-\left(-\frac{9}{2}\right)+\frac{1}{2}=5\)
áp dụng tính vha6t1 của dãy tỉ số băng nhau ta có:
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}=\frac{2.\left(2x+3\right)-\left(4x+5\right)}{2.\left(5x+2\right)-\left(10x+2\right)}=\frac{4x+6-4x-5}{10x+4-10x-2}=\frac{1}{2}\)
suy ra:
\(\frac{2x+3}{5x+2}=\frac{1}{2}\Rightarrow1.\left(5x+2\right)=2.\left(2x+3\right)\)
\(5x+2=4x+6\)
\(5x-4x=6-2\)
\(x=4\)
\(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\)
\(\left(x+1\right)\left(x+3\right)=\left(0,5x+2\right)\left(2x+1\right)\)
\(x^2+4x+3=x^2+4,5x+2\)
\(x^2-x^2+4x-4,5x-2+3=0\)
\(1-0,5x=0\)
\(x=2\)
x+2/327 + x+3/326 + x+4/325 + x+5/324 + x+349/5 = 0
=> x+2/327 + 1 + x+3/326 + 1 + x+4/325 + 1 + x+5/324 + 1 - x+349/5 - 4 = 0
=> x+329/327 + x+329/326 + x+329/325 + x+329/324 + x+329/5 = 0
=> (x+329).(1/327 + 1/326 + 1/325 + 1/324 + 1/5) = 0
Dễ thấy: 1/327 + 1/326 + 1/325 + 1/324 + 1/5 > 0
=> x + 329 = 0
=> x = -329
a) \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Leftrightarrow\)\(\left(2x+3\right)\left(10x+2\right)=\left(5x+2\right)\left(4x+5\right)\)
\(\Leftrightarrow20x^2+4x+30x+6=20x^2+25x+8x+10\)
\(\Leftrightarrow20x^2-20x^2+4x+30x-25x-8x=10-6\)
\(\Leftrightarrow x=4\)
b) \(\frac{3x-1}{40-5x}=\frac{25-3x}{5x-34}\)
\(\Leftrightarrow\left(3x-1\right)\left(5x-34\right)=\left(40-5x\right)\left(25-3x\right)\)
\(\Leftrightarrow15x^2-102x-5x+34=1000-120x-125x+15x^2\)
\(\Leftrightarrow15x^2-15x^2-102x-5x+120x+125x=1000-34\)
\(\Leftrightarrow138x=966\)
\(\Leftrightarrow x=7\)
a ) \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\left(2x+3\right).\left(10x+2\right)=\left(5x+2\right)\left(4x+5\right)\)
\(20x^2+4x+30x+6=20x^2+25x+8x+10\)
\(4x+30x-25x-8x=10-6\)
\(x=4\)
Ta có: \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Rightarrow\left(2x+3\right).\left(10x+2\right)=\left(5x+2\right).\left(4x+5\right)\)
\(\Rightarrow20x^2+4x+30x+6=10x^2+25x+8x+10\)
\(\Rightarrow34x+6=33x+10\)
\(\Rightarrow34x-33x=-6+10\)
\(\Rightarrow x=4\)
Ta có:
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Rightarrow\left(2x+3\right)\left(10x+2\right)=\left(5x+2\right)\left(4x+5\right)\)
\(\Rightarrow20x^2+34x+6=20x^2+33x+10\)
\(\Rightarrow\left(20x^2+34x+6\right)-\left(20x^2+33x+6\right)=\left(20x^2+33x+10\right)-\left(20x^2+33x+6\right)\)
\(\Rightarrow\left(20x^2-20x^2\right)+\left(34x-33x\right)+\left(6-6\right)=\left(20x^2-20x^2\right)+\left(33x-33x\right)+\left(10-6\right)\)
\(\Rightarrow x=4\)
Vậy x = 4.