Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy+3x=5y-2\)
\(\Leftrightarrow x\left(y+3\right)=5y-2\)
\(\Leftrightarrow x=\frac{5y-2}{y+3}\)
\(\Leftrightarrow x=\frac{5\left(y+3\right)-17}{y+3}\)
\(\Leftrightarrow x=5-\frac{17}{y+3}\)
Do x nguyên, y nguyên nên y+3 là Ư(17)
Ta có bảng:
y+3 | -17 | -1 | 1 | 17 |
y | -20 | -4 | -2 | 14 |
x | 6 | 22 | -12 | 4 |
Vậy (x;y) là (6;-20);(22;-4);(-12;-2);(4;14)
b) \(\Leftrightarrow\frac{\frac{99.100.101}{3}}{100x^2+\frac{99.100}{2}}=\frac{6666}{131}\Rightarrow x=\pm4\)
\(1+\frac{1}{3}+\frac{1}{6}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\frac{2}{6}+\frac{2}{12}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{x\left(x+1\right)}=4\)
\(\Leftrightarrow1+\left[2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)\right]=4\)
\(\Leftrightarrow1+2\left(\frac{1}{2}-\frac{1}{\left(x+1\right)}\right)=4\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{4-1}{2}=\frac{3}{2}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{2}-\frac{3}{2}=-1\)
\(\Leftrightarrow x=-1+1=-2\)
Vậy x = -2
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{2.6}+\frac{2}{2.10}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\Leftrightarrow2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)
\(\Leftrightarrow2\left(1-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)
\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=1\frac{1991}{1993}\div2\)
\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=\frac{1992}{1993}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=1-\frac{1992}{1993}=\frac{1}{1993}\)
\(\Leftrightarrow x+1=1993\)
\(\Leftrightarrow x=1992\)
Bài 1:
a) Ta có: \(\frac{2^8\cdot4\cdot13+2^7\cdot8\cdot65}{2^9\cdot39}\)
\(=\frac{2^8\cdot4\cdot13+2^8\cdot4\cdot13\cdot5}{2^9\cdot39}\)
\(=\frac{2^{10}\cdot13\left(1+5\right)}{2^9\cdot13\cdot3}=\frac{6}{3}=2\)
b) Đặt \(A=4+2^2+2^3+2^4+...+2^{20}\)
Ta có: \(A=4+2^2+2^3+2^4+...+2^{20}\)
\(\Rightarrow2A=2^3+2^3+2^4+...+2^{21}\)
Ta có: \(2A-A=2^3+2^{21}-2^2-2^2=8+2^{21}-8=2^{21}\)
hay \(A=2^{21}\)
Vậy: \(4+2^2+2^3+2^4+...+2^{20}=2^{21}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow3x+\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1\)
\(\Leftrightarrow3x+\frac{3}{2}=1\)
\(\Leftrightarrow3x=-\frac{1}{2}\)
\(\Leftrightarrow x=-\frac{1}{2}\div3=-\frac{1}{6}\)
Sửa đề \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}=\frac{99}{100}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2}-\frac{1}{x+1}=\frac{99}{100}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{99}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Leftrightarrow x=99\)
a) => ( x + 1/2 ) . 3 = 1
=> 3x + 3/2 = 1
=> 3x = 1 - 3/2
=> 3x = -1/2
=> x = -1/2 : 3 = -1/6
\(3\left(2x-\frac{5}{4}\right)=\left(3-1\frac{1}{2}\right)\left(x-\frac{1}{2}\right)\)
\(\Leftrightarrow6x-\frac{15}{4}=\frac{3}{2}x+\frac{1}{12}\)
\(\Leftrightarrow\frac{9}{2}x+\frac{3}{4}=\frac{15}{4}\)
\(\Leftrightarrow\frac{9}{2}x=3\)
\(\Leftrightarrow x=\frac{2}{3}\)