Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\)Bạn viết thiếu 1 vế đúng không?
\(\dfrac{x-69}{30}+\dfrac{x-67}{32}+\dfrac{x-65}{34}=\dfrac{x-63}{36}+\dfrac{x-61}{38}+\dfrac{x-59}{40}\)\(\Rightarrow\left(\dfrac{x-69}{30}-1\right)+\left(\dfrac{x-67}{32}-1\right)+\left(\dfrac{x-65}{34}-1\right)=\left(\dfrac{x-63}{36}-1\right)+\left(\dfrac{x-61}{38}-1\right)+\left(\dfrac{x-59}{40}-1\right)\)
\(\Rightarrow\dfrac{x-99}{30}+\dfrac{x-99}{32}+\dfrac{x-99}{34}=\dfrac{x-99}{36}+\dfrac{x-99}{38}+\dfrac{x-99}{40}\)
\(\Rightarrow\dfrac{x-99}{30}+\dfrac{x-99}{32}+\dfrac{x-99}{34}-\dfrac{x-99}{36}-\dfrac{x-99}{38}-\dfrac{x-99}{40}=0\)\(\Rightarrow\left(x-99\right)\left(\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{34}-\dfrac{1}{36}-\dfrac{1}{38}-\dfrac{1}{40}\right)=0\)
Vì \(\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{34}-\dfrac{1}{36}-\dfrac{1}{38}-\dfrac{1}{40}\ne0\)
Nên:
\(x-99=0\Rightarrow x=99\)
\(\dfrac{x+30}{2007}+\dfrac{x+32}{2005}=\dfrac{x+34}{2003}+\dfrac{x+36}{2001}\)
\(\Leftrightarrow\dfrac{x+30}{2007}+1+\dfrac{x+32}{2005}+1=\dfrac{x+34}{2003}+1+\dfrac{x+36}{2001}+1\)
\(\Leftrightarrow\dfrac{x+2037}{2007}+\dfrac{x+2037}{2005}=\dfrac{x+2037}{2003}+\dfrac{x+2037}{2001}\)
\(\Leftrightarrow\dfrac{x+2037}{2007}+\dfrac{x+2037}{2005}-\dfrac{x+2037}{2003}-\dfrac{x+2037}{2001}=0\)
\(\Leftrightarrow\left(x+2037\right)\left(\dfrac{1}{2007}+\dfrac{1}{2005}-\dfrac{1}{2003}-\dfrac{1}{2001}\right)=0\)
\(\Rightarrow x+2037=0\).Do \(\dfrac{1}{2007}+\dfrac{1}{2005}-\dfrac{1}{2003}-\dfrac{1}{2001}\ne0\)
\(\Rightarrow x=-2037\)
Các bạn xem mình làm thế này có đúng không nhé. Nếu sai thì xin các bạn chữa hộ mình
Bài làm
\(\dfrac{x+30}{2007}+\dfrac{x+32}{2005}=\dfrac{x+34}{2003}+\dfrac{x+36}{2001}\)
\(\dfrac{x+30}{2007}+\dfrac{x+32}{2005}-\dfrac{x+34}{2003}-\dfrac{x+36}{2001}=0\)
\(\left(\dfrac{x+30}{2007}+1\right)+\left(\dfrac{x+32}{2005}+1\right)-\left(\dfrac{x+34}{2003}+1\right)-\left(\dfrac{x+36}{2001}+1\right)=0\)
\(\dfrac{x+30+2007}{2007}+\dfrac{x+32+2005}{2005}-\dfrac{x+34+2003}{2003}-\dfrac{x+36+2001}{2001}=0\)\(\dfrac{x+2037}{2007}+\dfrac{x+2037}{2005}-\dfrac{x+2037}{2003}-\dfrac{x+2037}{2001}=0\)\(\left(x+2037\right).\left(\dfrac{1}{2007}+\dfrac{1}{2005}-\dfrac{1}{2003}-\dfrac{1}{2001}\right)=0\)
x+2037=0
x = -2037
\(\dfrac{x-1}{65}+\dfrac{x-3}{63}=\dfrac{x-5}{61}+\dfrac{x-7}{59}\)
\(\Leftrightarrow\dfrac{x-1}{65}-1+\dfrac{x-3}{63}-1=\dfrac{x-5}{61}-1+\dfrac{x-7}{59}-1\)
\(\Leftrightarrow\dfrac{x-66}{65}+\dfrac{x-66}{63}=\dfrac{x-66}{61}+\dfrac{x-66}{59}\)
\(\Leftrightarrow\left(x-66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\)
\(\Leftrightarrow x-66=0\)
\(\Leftrightarrow x=66\)
Vậy x=66.
a, Theo đề ta có:
\(2.3^x-405=3^{x-1}\)
=> \(2.3^x-405=3^x:3\)
=> \(405=(2.3^x)-(3^x:3)\)
=>\(405=(2.3^x)-(3^x.\dfrac{1}{3})\)
=> \(405=3^x(2-\dfrac{1}{3})\)
=>\(405=3^x(\dfrac{6}{3}-\dfrac{1}{3})\)
=> \(405=3^x.\dfrac{5}{3}\)
=> \(3^x=405:\dfrac{5}{3}\)
=>\(3^x=405.\dfrac{3}{5}\)
=> \(3^x=81.3\)
=> \(3^x=243\)
=> \(3^x=3^5\)
=> x=5
Vậy:..............................
\(\dfrac{x+32}{11}+\dfrac{x+33}{12}=\dfrac{x+34}{13}+\dfrac{x+35}{14}\)
\(\Leftrightarrow\left(\dfrac{x+32}{11}-1\right)+\left(\dfrac{x+33}{12}-1\right)=\left(\dfrac{x+34}{13}-1\right)+\left(\dfrac{x+35}{14}-1\right)\)
\(\Leftrightarrow\dfrac{x+21}{11}+\dfrac{x+21}{12}=\dfrac{x+21}{13}+\dfrac{x+21}{14}\)
\(\Leftrightarrow\dfrac{x+21}{11}+\dfrac{x+21}{12}-\dfrac{x+21}{13}-\dfrac{x+21}{14}=0\)
\(\Leftrightarrow\left(x+21\right)\left(\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
Mà \(\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)
\(\Leftrightarrow x+21=0\)
\(\Leftrightarrow x=-21\)
Vậy ..
\(\dfrac{x+35}{65}+\dfrac{x+39}{61}=\dfrac{x+43}{57}+\dfrac{x+47}{53}\)
\(\Leftrightarrow\dfrac{x+35}{65}+1+\dfrac{x+39}{61}+1=\dfrac{x+43}{57}+1+\dfrac{x+47}{53}+1\)
\(\Leftrightarrow\dfrac{x+100}{65}+\dfrac{x+100}{61}-\dfrac{x+100}{57}-\dfrac{x+100}{53}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{65}+\dfrac{1}{61}-\dfrac{1}{57}-\dfrac{1}{53}\ne0\right)=0\Leftrightarrow x=-100\)
Ta có:
\(\dfrac{x+35}{65}+\dfrac{x+39}{61}=\dfrac{x+43}{57}+\dfrac{x+47}{53}\\ \Rightarrow\left(\dfrac{x+35}{65}+1\right)+\left(\dfrac{x+39}{61}+1\right)=\left(\dfrac{x+43}{57}+1\right)+\left(\dfrac{x+47}{53}+1\right)\\ \Rightarrow\dfrac{x+100}{53}+\dfrac{x+100}{61}=\dfrac{x+100}{57}+\dfrac{x+100}{53}\\ \Rightarrow\left(x+100\right)\left(\dfrac{1}{65}+\dfrac{1}{61}-\dfrac{1}{57}-\dfrac{1}{53}\right)=0\)
Ta thấy:
\(\dfrac{1}{65}< \dfrac{1}{57}\\ \dfrac{1}{61}< \dfrac{1}{53}\\ \Rightarrow\left(\dfrac{1}{65}+\dfrac{1}{62}\right)-\left(\dfrac{1}{57}+\dfrac{1}{53}\right)< 0\)
Hay \(\dfrac{1}{65}+\dfrac{1}{62}-\dfrac{1}{57}-\dfrac{1}{53}\ne0\)
\(\Rightarrow x+100=0\\ \Rightarrow x=0-100\\ \Rightarrow x=-100\)
Vậy \(x=-100\)
\(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot...\cdot\dfrac{14}{30}.\dfrac{15}{32}=\dfrac{1}{2^x}\)
\(\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot14\cdot15}{4\cdot6\cdot8\cdot10\cdot...\cdot30\cdot32}=\dfrac{1}{2^x}\)
\(\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot14\cdot15}{2\cdot4\cdot6\cdot8\cdot10\cdot...\cdot30\cdot32}=\dfrac{1}{2^{x+1}}\)
\(\Rightarrow\dfrac{1}{2^{15}\cdot32}=\dfrac{1}{2^{x+1}}\)
\(\Rightarrow2^{15}.2^5=2^{x+1}\)
\(\Rightarrow2^{20}=2^{x+1}\)
\(\Rightarrow x+1=20\Rightarrow x=19\)
Vậy x = 19.
Lời giải:
\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
\(\Leftrightarrow \frac{x+32}{11}-3+\frac{x+23}{12}-2=\frac{x+38}{13}-3+\frac{x+27}{14}-2\)
\(\Leftrightarrow \frac{x-1}{11}+\frac{x-1}{12}=\frac{x-1}{13}+\frac{x-1}{14}\)
\(\Leftrightarrow (x-1)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Dễ thấy: \(\frac{1}{11}+\frac{1}{12}> \frac{1}{13}+\frac{1}{14}\Rightarrow \frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\neq 0\)
Do đó: \(x-1=0\Leftrightarrow x=1\) là nghiệm duy nhất.
x= 1372221/18559
(x-99) (1/30 + 1/32 + 1/34 - 1/36 - 1/38) = 0
SUy ra x - 99 = 0
VẬy x =99