Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=\left(x+\frac{1}{x}\right)^2\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=t-2\)điều kiện t>=0,x # 0
Phương trình trở thành
8t +4(t-2)2 - 4(t-2)2t =(x+4)2
8t + 4t2 - 16t + 16 -4t3 + 16t2 - 16t=(x+4)2
-4t3 + 20t2 -24t=x2 +8x
-4t(t2 -5t +6)=x(x+8)
-4t(t-2)(t-3)=x(x+8)
Mình chỉ giúp dược tới đó
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
ĐKXĐ : \(x\ne0\)
Ta có \(pt\Leftrightarrow8\left(x^2+\frac{1}{x^2}+2\right)+4\left(x^2+\frac{1}{x}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}+2\right)=\left(x+4\right)^2\)
Đặt \(x^2+\frac{1}{x^2}=a\) thay vào pt trên ta có :
\(pt\Leftrightarrow8\left(a+2\right)+4a^2-4.a.\left(a+2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8a+16+4a^2-4a^2-8a=\left(x+4\right)^2\)
\(\Leftrightarrow\left(x+4\right)^2=16\Leftrightarrow\orbr{\begin{cases}x+4=4\\x+4=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=0\left(KTMĐKXĐ\right)\\x=-8\left(TMĐKXĐ\right)\end{cases}}}\)
Vậy \(x=-8\)
\(\)
rút 4 ra ngoài nhan bạn 4(2(x+1/x)^2+(x^2+1/x^2)^2-(x^2+1/x^2)(x+1/x)^2=(x+4)^2
mik xét cái này cho dễ nhìn nhan
2(x+1/x)^2-(x^2+1/x^2)(x+1/x)^2
= (x+1/x)^2(2-x^2-1/x^2)
= -(x+1/x)^2(x^2-2+1/x^2)
= -(x+1/x)^2(x-1/x)^2=-(x^2-1/x^2)^2
thế ở trên ta có
4(-(x^2-1/x^2)^2+(x^2+1/x^2)^2)=(x+4)^2
4(-x^4+2-1/x^4+x^4+2+1/x^4)=x^2+8x+16
4.4=x^2+8x+16
suy ra x^2+8x=0
x(x+8)=0
suy ra x=0 hoặc x=-8
mak nhìn để bài thì x=0 ko được nên x=-8
a, \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
\(\Rightarrow2x^2+3\left(x^2-1\right)=5x^2+5x\)
\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)
\(\Rightarrow2x^2+3x^2-5x^2-5x=3\)
\(\Rightarrow-5x=3\Rightarrow x=-\dfrac{3}{5}\)
b, \(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow8x+16-5x^2-10x+4\left(x^2+x-2x-2\right)+2\left(x^2-4\right)=0\)
\(\Rightarrow8x+16-5x^2-10x+4x^2-4x-8+2x^2-8=0\)
\(\Rightarrow\left(8x-10x-4x\right)+\left(16-8-8\right)+\left(-5x^2+4x^2+2x^2\right)=0\)
\(\Rightarrow-6x+x^2=0\)
\(\Rightarrow x.\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Chúc bạn học tốt!!!
a, 2 x ·2+3 (x -1)(x +1)=5 x (x +1)
2 ·2 x+3(x -1)(x +1)=5x(x +1) 4 x+3 (x -1)(x +1)=5 x (x +1)
Kết quả: X ∈ {(- 1/4+√23/4 I) ,(- 1/4-√23/4 I)} |
tớ ko bt lm abc , tớ lm d thôi nha , thứ lỗi
\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)
\(\frac{3x+13}{2x^2+x-6}=\frac{5}{x-6}+\frac{7}{1-2x}\)
\(\frac{3x+13}{\left(x+2\right)\left(2x-3\right)}=\frac{3x+37}{\left(x-6\right)\left(2x-1\right)}\)
\(\frac{10-9x}{-4x^3+32x^2-51x+18}=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{10}{9}\end{cases}}\)
a)\(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\left(x+2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1+3\left(x^2+2x+1\right)=x^3+8\)
\(\Leftrightarrow-3x^2+3x+3x^2+6x+3=9\)
\(\Leftrightarrow9x=6\Leftrightarrow x=\frac{2}{3}\)
b) \(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow x^2-4=8x-16\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Leftrightarrow x^2-2x-6x+12=0\)
\(\Leftrightarrow x\left(x-2\right)-6\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=2\end{cases}}\)
c) \(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2-9\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=11\end{cases}}\)
d) \(4x^2-12x+9=\left(5-x\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2=\left(5-x\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=5-x\\2x-3=x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=-2\end{cases}}\)
a) \(\Leftrightarrow\left(2x-2\right)^2-\left(3x+6\right)^2=0\)
\(\Leftrightarrow\left(\left(2x-2\right)+\left(3x+6\right)\right)\left(\left(2x-2\right)-\left(3x+6\right)\right)=0\)
\(\Leftrightarrow\left(5x+4\right)\left(-x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x+4=0\\-x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{4}{5}\\x=-8\end{cases}}}\)
b) \(\Leftrightarrow4\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)=11\)
\(\Leftrightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)
\(\Leftrightarrow4x+13=11\)
\(\Leftrightarrow x=-\frac{1}{2}\)
a) \(4\left(x-1\right)^2-9\left(x+2\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-1\right)\right]^2-\left[3\left(x+2\right)\right]^2=0\)
\(\Leftrightarrow\left(2x-2\right)^2-\left(3x+6\right)^2=0\)
\(\Leftrightarrow\left(2x-2+3x+6\right)\left(2x-2-3x-6\right)=0\)
\(\Leftrightarrow\left(5x+4\right)\left(-x-8\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}5x+4=0\\-x-8=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{4}{5}\\x=-8\end{cases}}}\)
b) \(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x+1\right)\left(x-1\right)=11\)
\(\Leftrightarrow4\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)=11\)
\(\Leftrightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)
\(\Leftrightarrow4x+13=11\)
\(\Leftrightarrow4x=-2\)
\(\Leftrightarrow x=-\frac{2}{4}=-\frac{1}{2}\)
(Nhớ k cho mình với nhé!)
bài 1
\(ĐKXĐ:1+x\ne0\Rightarrow x\ne-1\)
\(\frac{3-7x}{1+x}=\frac{1}{2}\Rightarrow2\left(3-7x\right)=1+x\)
\(\Leftrightarrow6-14x=1+x\\
\Leftrightarrow-14x-x=1-6\\
\Leftrightarrow-15x=-5\\
\Leftrightarrow x=\frac{1}{3}\left(N\right)\)