Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)
\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)
\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
Lại có :
\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)
\(\Rightarrow\)\(x=2019\)
Vậy \(x=2019\)
Chúc bạn học tốt ~
1. Tự làm
2. Ta có: \(x_1+x_2+x_3+...+x_{2017}+x_{2018}+x_{2019}+x_{2020}=0\)
=> \(\left(x_1+x_2+x_3\right)+\left(x_4+x_5+x_6\right)+....+\left(x_{2017}+x_{2018}+x_{2019}\right)+x_{2020}=0\)
=> \(3+3+....+3+x_{2020}=0\) (gồm 673 chữ số 3 vì x1 + .... + x2019 gồm 2019 hạng tử gộp lại mỗi cặp 3 hạng tử)
=> \(3.673+x_{2020}=0\)
=> \(2019+x_{2020}=0\)
=> \(x_{2020}=-2019\)
3. a) 3(x - 1) - (x - 5) = -18
=> 3x - 3 - x + 5 = -18
=> 2x + 2 = -18
=> 2x = -18 - 2
=> 2x = -20
=> x = -20 : 2
=> x = 10
b ) x + (x + 1) + (x + 2) + ... + (x + 2019) = 0
=> (x + x + ... + x) + (1 + 2 + ... + 2019) = 0
=> 2020x + (2019 + 1).[(2019 - 1) : 1 + 1] : 2 = 0
=> 2020x + 2020. 2019 : 2 = 0
=> 2020x + 2039190 = 0
=> 2020x = -2039190
=> x = -2039190 : 2020
=> x = -10095
(xem lại đề)
c) Ta có: 3x + 23 = 3(x + 4) + 11
Do 3(x + 4) \(⋮\)4 => 11 \(⋮\)x + 4
=> x + 4 \(\in\)Ư(11) = {1; -1; 11; -11}
Với: +) x + 4 = 1 => x = 1 - 4 = -3
+) x + 4 = -1 => x = -1 - 4 = -5
+) x + 4 = 11 => x = 11 - 4 = 7
+) x + 4 = -11 => x = -11 - 4 = -15
4a) Ta có: 22x - y = 21x + x - y = 21 + (x - y)
Do 21x \(⋮\)7; x - y \(⋮\)7
=> 22x - y \(⋮\)7
b) 8x + 20y = 7x + 21y + x - y = 7(x + 3y) + (x - y)
Do : 7(x + 3y) \(⋮\)7; x - y \(⋮\)7
=> 8x + 20y \(⋮\)7
c) 11x + 10y = 14x + 7y - 3x + 3y = 7(2x + y) - 3(x - y)
Do: 7(2x + y) \(⋮\)7; 3(x - y) \(⋮\)7
=> 11x + 10y \(⋮\)7
\(\frac{x+4}{2016}+\frac{x+3}{2017}=\frac{x+2}{2018}+\frac{x+1}{2019}\)
\(\Rightarrow\frac{x+4}{2016}+1+\frac{x+3}{2017}+1=\frac{x+2}{2018}+1+\frac{x+1}{2019}+1\)
\(\Rightarrow\frac{x+4+2016}{2016}+\frac{x+3+2017}{2017}=\frac{x+2+2018}{2018}+\frac{x+1+2019}{2019}\)
\(\Rightarrow\frac{x+2020}{2016}+\frac{x+2020}{2017}=\frac{x+2020}{2018}+\frac{x+2020}{2019}\)
\(\Rightarrow\frac{x+2020}{2016}+\frac{x+2020}{2017}-\frac{x+2020}{2018}-\frac{x+2020}{2019}=0\)
\(\Rightarrow\left(x+2020\right)\left(\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}\right)=0\)
\(\Rightarrow x+2020=0\) vì \(\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}>0\)
\(\Rightarrow x=-2020\)
\(\dfrac{x-1}{2019}+\dfrac{x-2}{2018}=\dfrac{x-3}{2017}+\dfrac{x-4}{2016}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2019}-1\right)+\left(\dfrac{x-2}{2018}-1\right)=\left(\dfrac{x-3}{2017}-1\right)+\left(\dfrac{x-4}{2016}-1\right)\)
\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}-\dfrac{x-2020}{2017}-\dfrac{x-2010}{2016}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)
\(\Rightarrow x-2020=0\Leftrightarrow x=2020\)
vậy.......
a, 3 - 2x = 3 . (5 - x) + 4
3 - 2x = 15 - 3x + 4
-2x + 3x = 15 + 4 - 3
x = 16
b, 4 - (7x + 2017) = 6 . (5 - x) - 2017
4 - 7x - 2017 = 30 - 6x - 2017
-7x + 6x = 30 - 2017 - 4 + 2017
-x = 26
x = -26
c, 15 - x . (x + 1) = 4 - x^2 + 2x
15 - x^2 - x = 4 - x^2 + 2x
-x^2 - x + x^2 - 2x = 4 - 15
-3x = -11
x = 11/3
d, -4 . (x - 5) + 2016 = 3 . (8 - x) - (2x - 2016)
-4x + 20 + 2016 = 24 - 3x - 2x + 2016
-4x + 3x +2x = 24 + 2016 - 20 - 2016
x = 4
đúng 100%
a)x=0
a) \(\frac{x}{2}+\frac{x}{3}+\frac{x}{4}+\frac{x}{5}=0\)
\(\frac{77x}{60}=0\)
\(77x=0.60\)
\(77x=0\)
\(x=0\)