K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

b) pt<=> \(\left(x^2+2xy+y^2\right)+\left(4x^2-4x+1\right)=0\)

<=> \(\left(x+y\right)^2+\left(2x-1\right)^2=0\)

<=> \(\orbr{\begin{cases}x=-y\\x=\frac{1}{2}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{2}\end{cases}}\)

10 tháng 7 2019

\(A=x^6+2x\left(x^2+y\right)+x^2+y^2+26\) 

   \(=x^6+2x^2+2xy+x^2+y^2+26\) 

    \(=x^6+2x^2+\left(x+y\right)^2+26\ge26\forall x;y\) 

Dấu "=" xảy ra<=> \(x=0\) và \(\left(x+y\right)^2=0\Rightarrow y=0\) 

Vậy Amin =26 tại x=y=0

11 tháng 7 2019

B=\(y^2-2xy+3x^2+2y-14x+1949\)

 \(=\left(y^2-2xy+x^2+2y-2x+1\right)+\left(2x^2-12x+18\right)+1930\)

 \(=\left(x-y-1\right)^2+2\left(x-3\right)^2+1930\)

  \(\ge1930\)

MinB=1930 khi \(\hept{\begin{cases}x=y+1\\x=3\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Bài 2: 

a: \(A=\left|5x+1\right|-\dfrac{3}{8}>=-\dfrac{3}{8}\)

Dấu '=' xảy ra khi x=-1/5

b: \(B=\left|-\dfrac{1}{6}x+2\right|+0.25>=0.25\)

Dấu '=' xảy ra khi x=12

Bài 3: 

a: \(A=2018-\left|x+2019\right|< =2018\)

Dấu '=' xảy ra khi x=-2019

b: \(=-10-\left|2x-\dfrac{1}{1009}\right|< =-10\)

Dấu '=' xảy ra khi x=1/2018

13 tháng 7 2019

Giải giúp mik câu c thôi cx đc!

Help me !!! gianroi

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)