Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Cách 1:
Ta có: \(x^2-10x+9=0\)
\(\Leftrightarrow x^2-x-9x+9=0\)
\(\Leftrightarrow x\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)
Vậy: S={1;9}
Cách 2:
Ta có: \(x^2-10x+9=0\)
\(\Leftrightarrow x^2-10x+25-16=0\)
\(\Leftrightarrow\left(x-5\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=4\\x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)
Vậy: S={9;1}
b)
Cách 1:
Ta có: \(8x^2-2x-15=0\)
\(\Leftrightarrow8x^2-12x+10x-15=0\)
\(\Leftrightarrow4x\left(2x-3\right)+5\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\4x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-5}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{3}{2};\frac{-5}{4}\right\}\)
Cách 2:
Ta có: \(8x^2-2x-15=0\)
\(\Leftrightarrow8\left(x^2-\frac{1}{4}x-\frac{15}{8}\right)=0\)
\(\Leftrightarrow x^2-\frac{1}{4}x-\frac{15}{8}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{1}{8}+\frac{1}{64}-\frac{121}{64}=0\)
\(\Leftrightarrow\left(x-\frac{1}{8}\right)^2=\frac{121}{64}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{8}=\frac{11}{8}\\x-\frac{1}{8}=-\frac{11}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{12}{8}=\frac{3}{2}\\x=\frac{-11+1}{8}=\frac{-10}{8}=\frac{-5}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{3}{2};\frac{-5}{4}\right\}\)
c) Ta có: \(2x^2+8x-7=0\)
\(\Leftrightarrow2\left(x^2+4x-\frac{7}{2}\right)=0\)
\(\Leftrightarrow x^2+4x+4-\frac{15}{2}=0\)
\(\Leftrightarrow\left(x+2\right)^2=\frac{15}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{\frac{15}{2}}\\x+2=-\sqrt{\frac{15}{2}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\frac{15}{2}}-2\\x=-\sqrt{\frac{15}{2}}-2\end{matrix}\right.\)
Vậy: \(S=\left\{\sqrt{\frac{15}{2}}-2;-\sqrt{\frac{15}{2}}-2\right\}\)
d) Ta có: \(3x^2-15x+3=0\)
\(\Leftrightarrow3\left(x^2-5x+1\right)=0\)
\(\Leftrightarrow x^2-5x+1=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{21}{4}=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\frac{21}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5}{2}=\frac{\sqrt{21}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{21}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{21}+5}{2}\\x=\frac{-\sqrt{21}+5}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{\sqrt{21}+5}{2};\frac{-\sqrt{21}+5}{2}\right\}\)
e) Ta có: \(16x^2-24x-4=0\)
\(\Leftrightarrow4\left(4x^2-6x-1\right)=0\)
\(\Leftrightarrow4x^2-6x-1=0\)
\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{13}{4}=0\)
\(\Leftrightarrow\left(2x-\frac{3}{2}\right)^2=\frac{13}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{3}{2}=\frac{\sqrt{13}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{13}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\frac{3+\sqrt{13}}{2}\\2x=\frac{3-\sqrt{13}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+\sqrt{13}}{2}:2=\frac{3+\sqrt{13}}{4}\\x=\frac{3-\sqrt{13}}{2}:2=\frac{3-\sqrt{13}}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{3+\sqrt{13}}{4};\frac{3-\sqrt{13}}{4}\right\}\)
f) Ta có: \(-5x^2+6x+3=0\)
\(\Leftrightarrow-5\left(x^2-\frac{6}{5}x-\frac{3}{5}\right)=0\)
\(\Leftrightarrow x^2-\frac{6}{5}x-\frac{3}{5}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{5}+\frac{9}{25}-\frac{24}{25}=0\)
\(\Leftrightarrow\left(x-\frac{3}{5}\right)^2=\frac{24}{25}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3}{5}=\frac{2\sqrt{6}}{5}\\x-\frac{3}{5}=\frac{-2\sqrt{6}}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+2\sqrt{6}}{5}\\x=\frac{3-2\sqrt{6}}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{3+2\sqrt{6}}{5};\frac{3-2\sqrt{6}}{5}\right\}\)
i) Ta có: \(6x^2-9x+40=0\)
\(\Leftrightarrow6\left(x^2-\frac{3}{2}x+\frac{20}{3}\right)=0\)
\(\Leftrightarrow x^2-\frac{3}{2}x+\frac{20}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}+\frac{293}{48}=0\)
\(\Leftrightarrow\left(x-\frac{3}{4}\right)^2+\frac{293}{48}=0\)(vô lý)
Vậy: \(S=\varnothing\)
Bài 1 :
Theo bài ra ta có : \(f\left(x\right)=2x^4-3x^2-2x^4+4x^3-2x+3x-15\)
\(=-3x^2+4x^3+x-15\)
\(g\left(x\right)=-4x^3-3x^4-2x+x^2+2+3x^4-12\)
\(=-4x^3-2x+x^2-10\)
\(f\left(x\right)+g\left(x\right)=-3x^2+4x^3+x-15-4x^3-2x+x^2-10\)
\(=-2x^2-x-25\)
\(g\left(x\right)-f\left(x\right)=-4x^3-2x+x^2-10+3x^2-4x^3-x+15\)
\(=-8x^3-3x+4x^2+5\)
Chị làm nốt mấy bài sau nhé, tương tự thôi
Bài 3 : a) \(M+3x^2y-4xy^2+5xy=9x^2y-7xy+6xy^2\)
\(M=\left(9x^2y-7xy+6xy^2\right)-\left(3x^2y-4xy^2+5xy\right)\)
\(M=9x^2y-7xy+6xy^2-3x^2y+4xy^2-5xy\)
\(M=\left(9x^2y-3x^2y\right)+\left(-7xy-5xy\right)+\left(6xy^2+4xy^2\right)\)
\(M=6x^2y-12xy+10xy^2\)
=> bậc của M là 3
b.
f(x) = 5x4 + 4x3 - 10x2 - 7x + 10
g(x) = 4x4 + 5x2 - 9x - 8
f(x) + g(x) = 9x4 + 4x3 - 5x2 - 16x + 2
Bài 4 : a.
f(x) = 2x5 - 7x4 + 3x3 - 10x + 1
g(x) = -9x5 - 2x4 + 15x3 + 5x2 + x + 7
b. f(x) = 2x5 - 7x4 + 3x3 - 10x + 1
g(x) = -9x5 - 2x4 + 15x3 + 5x2 + x + 7
f(x) + g(x) = -7x5 - 9x4 + 18x3 + 5x2 - 9x + 8
Trừ tương tự
Bài 5 cũng như bài 4
a)x=-2
b)x=1
c)x=1/2
f)x=1 hoặc x=-1
h)x=0 hoặc x=6
i)x=2
hok tốt!
_Lan Lan_
Áp dụng hằng đẳng thức:\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
Áp dụng vào từng bài là được:
\(VD1:x^3+3x^2+3x+1=-1\)
\(\Rightarrow\left(x+1\right)^3=-1\)
\(\Rightarrow x=-2\)
\(VD2:x^3-9x^2+27x-27=-8\)
\(\Rightarrow\left(x-3\right)^3=-8\)
\(\Rightarrow x=1\)
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
a) M + (5x2 - 2xy) = 6x2 + 9xy - y2
=> M = (6x2 + 9xy - y2) - (5x2 - 2xy)
=> M = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2
b) (25x2y - 13xy2 + y3) - m = 11x2y - 2y3
=> m = (25x2y - 13xy2 + y3) - (11x2y - 2y3)
=> m = 25x2y - 13xy2 + y3 - 11x2y + 2y3 = 14x2y - 13xy2 + 3y3
c) M = 0 - (12x4 - 15x2y + 2xy2 + 7) = -12x4 + 15x2y - 2xy2 - 7
a,\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(< =>M=6x^2+9xy-y^2-5x^2+2xy\)
\(< =>M=x^2+11xy-y^2\)
b,\(\left(25x^2y-13xy^2+y^3\right)-M=11x^2y-2y^3\)
\(< =>M=25x^2y-13xy^2+y^3-11x^2y+2y^3\)
\(< =>M=14x^2y-12xy^2+3y^3\)
c,\(M+\left(12x^4-15x^2y+2xy^2+7\right)=0\)
\(< =>M=15x^2y-7-2xy^2-12x^4\)
Tham khao:
Giải các phương trình sau?
2, (x +3) ^4 + (x+1)^4 = 16
3, x^2 + [x/( x +1)]^2 =1
4, căn(5x-1) - căn(3x-2) = căn(x-1)
5, 2x^4 + 3x^3 -16 x^2 +3x +2 =0
6, (x^2 +3x + 1/4) (x^2 -x +1/4) = 12x^2
7, x^2 + 3x +1 = căn (x^4 +x^2 +1)
8, [căn(x-1) +1) ^3 +2 căn(x-1) = 2 -x
Rất cảm ơn mọi người
giải: *cách 1:
PT bậc 4 có bậc 0 là 8, nên nghiệm nguyên nếu có là ước của +/-2; +/-4; +/-8. Dùng sơ đồ Horne để xác định => 2 là nghiệm đúng của PT.
vì thế, (1) <=> ( = 0, ta tiếp tục phân tích (x^3-6x+4) sẽ được:
(x-2) (x-2) (x^2+2x-2)=0 dễ dàng tính đc PT 3 nghiêm S={ 2 ; -1+căn 3 ; -1-căn 3}
*cách 2: Phân tích hạng tử như bạn đã giải rồi
(x^4-2x^3) - (6x^3+12x) + (4x-8) = 0 cứ thế ta tiếp tục phân tích. Tôi vẫn thích dùng PP nhẩm và Horne là tôt; gọn. Còn nhiều cách hơn nữa bạn ạ!
2, (x +3) ^4 + (x+1)^4 = 16 ; đây là PT có dạng (x +a) ^4 + (x+b)^4 = c; cách làm như sau:
đặt ẩn phụ: t = x= (a+b)/2 . Như vậy khi đạt t=x+2 PT đã cho trở thành: (t +1) ^4 + (t-1)^4 = 16, khai triễn HDT bậc 4 rút gọn sẽ đc PT: trùng phương t^4 + 6t^2 - 7 = 0 với điều kiện t=>0 đc t^2=1 ; t^2= -7 (loại). cuối cùng có hai nghiệm x= -1 ; x=-3./.
4, căn(5x-1) - căn(3x-2) = căn(x-1) (4) Đây la PT vô tỉ có dạng: f(x)+g(x)=h(x); giải: đkiện: x>1
BP hai vế đc;
(4) <=> 8x-3 -2căn(5x-1)*căn(3x-2)=x-1 <=> 7x-2=2 căn(15x^2-13x+2); tiếp tục BP lần nữa đc:
<=> 11x^2-24x+4 = 0. Vậy có nghiệm duy nhất là x=2 , nghiệm x= 2/11 bị loại./.
5, 2x^4 + 3x^3 -16 x^2 +3x +2 =0 (5). Đây là PT đối xứng loại I hay còn gọi là PT phản thương loại I
PP giải là nhóm các hạng tử bậc 4 với bậc 0; bậc 3 với bậc 1; sẽ như sau:
(5) <=> (2x^4 +2)+ (3x^3 +3x) -16x^2 =0, vì x=0 không là nghiệm nên chia hai vế cho x^2 được:
<=> 2(x^2 +1/x^2)+ 3(x +1/x) -16 = 0 (5')
đặt y = x+1/x (*) <=> y^2 -2 = x^2+ 1/x^2 ; thay vào (5') ta đc:
2y^2 +3y -20 = 0 ; giải ra đc: y1= - -4 ; y2= 5/2. thay lần lượt các giá trị này vào (*)
ta sẽ có: với y=-4 => x+ 1/x= -4 <=> x^2 + 4x + 1 = 0 => S={-2+căn 3; -2-căn 3}
tương tự thay y= 5/2 ...... tính tiếp đi nhé./.
6, (x^2 +3x + 1/4) (x^2 -x +1/4) = 12x^2 (6)
cũng dễ thôi bạn, chú ý nhé: VT là tích của 2 tam thức bậc 2, mỗi tam thức có hai hạng tử có hệ số tương ứng bằng nhau nên ta cần biến đổi bằng cách chia cả hai vế cho x^2 vì dễ thấy x=0 không là nghiệm. Sau đó rất dễ dàng xuất hiện các biểu thức giống nhau ở mỗi thừa số; ta sẽ đặt ẩn phụ
(x +3 + 1/4x) (x -1 +1/4x) = 12. Bây giờ ta đặt ẩn phụ t = x+1/4x (*); thay vào (6) đc:
(t +3 ) (t -1) = 12 ; <=> t^2 + 2t - 15 = 0 giải ra đc: t=-3 ; t= -5 . Thay lần lược các giá trị này vào (*) => x+1/4x = 3 <=> x^2 - 3x +1=0 ta sẽ đc nghiệm, giải tiếp đi bạn nhé./.
7, x^2 + 3x +1 = căn (x^4 +x^2 +1) (7)
Bài này ko khó đâu; BP hai vế rồi rút gọn sẽ đc PT bậc 3 (vì bậc 4 bị triệt tiêu rồi)
(7) <=> 3x^3+5x^2+3x = 0 <=> x(3x^2+5x+3) = 0 . Vậy có nghiệm duy nhất x=0
8, [căn(x-1) +1) ^3 +2 căn(x-1) = 2 -x (8)
a, x3 + 3x2 = 0
x2( x + 3 ) = 0
\(\Rightarrow\)x2 = 0 hoặc x + 3 = 0
x = 0 ____x = 0 - 3 =-3
b, x2 - 2x = 0
x ( x - 2 ) = 0
\(\Rightarrow\)x = 0 hoặc x - 2 = 0
x = 0+ 2 = 2
( #EXOComingSoon )
a,Cách 1 : \(x^2-10x+9=0\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=9\end{cases}}\)
Cách 2 : Dung p^2 nhẩm nghiệm p^2 bậc 2 vì : 1 - 10 + 9 = 0
\(\Leftrightarrow\orbr{\begin{cases}x_1=1\\x_2=\frac{c}{a}=9\end{cases}}\)
b, Cách 1 : \(8x^2-2x-15=0\Leftrightarrow\left(4x+5\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=\frac{3}{2}\end{cases}}\)
Cách 2 : \(\Delta=\left(-2\right)^2-4.8.\left(-15\right)=484>0\)
Pp có 2 nghiệm phân biệt : \(x_1=\frac{-2-\sqrt{484}}{16};x_2=\frac{-2+\sqrt{484}}{16}\)
toán 9 à bạn ?
c,\(2x^2+8x-7=0\)
Ta có : \(\Delta=8^2-4.\left(-7\right).2=64+56=120\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-8+\sqrt{120}}{4}=-2+\frac{\sqrt{120}}{4}\\x=\frac{-8-\sqrt{120}}{4}=-2-\frac{\sqrt{120}}{4}\end{cases}}\)
d,\(3x^2-15x+3=0\)
Ta có : \(\Delta=\left(-15\right)^2-4.3.3=225-36=189\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{15+\sqrt{189}}{6}\\x=\frac{15-\sqrt{189}}{6}\end{cases}}\)
e,\(16x^2-24x-4=0\Leftrightarrow4x^2-6x-1=0\)
Ta có : \(\Delta=\left(-6\right)^2-4.4.\left(-1\right)=36+16=52\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{6+\sqrt{52}}{8}\\x=\frac{6-\sqrt{52}}{8}\end{cases}}\)
f, \(-5x^2+6x+3=0\)
Ta có : \(\Delta=6^2-4.3.\left(-5\right)=36+60=96\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-6+\sqrt{96}}{-10}\\x=\frac{-6-\sqrt{96}}{-10}\end{cases}}\)
i, \(6x^2-9x+40=0\)
Ta có : \(\Delta=\left(-9\right)^2-4.6.40=81-960=-879\)
do đen ta < 0 => vô nghiệm