Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{18}\)
⇒ x + 1 = 18
⇒ x = 17
Vậy x = 17
b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
⇒ \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)
⇒ \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(1-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=1-\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=\frac{1}{148}\)
⇒ x + 3 = 148
⇒ x = 145
Vậy x = 145
a) Dễ thấy VT > 0;mà VT=VP
=>VP > 0 => 4x > 0=> x > 0
=>\(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)
=>BT đầu tương đương \(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{6}\right)=4x\)
\(=>3x+1=4x=>x=1\)
a) Để đẳng thức xảy ra thì: x>0 (vì: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|>0\) )
Khi đó: \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)
=>\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x\)
<=>x=1
Vậy x=1
b)Điều kiện: \(x\ne-3;-10;-21;-34\)
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
<=>\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
<=>\(\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
=>x+34-x-3=x
<=>x=31 (nhận)
Vậy x=31
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)+\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\frac{31}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow x=31\)
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow x+34-x-3=x\)
\(\Leftrightarrow x=31\)
\(ĐKXĐ\): \(x\ne-3\); \(x\ne-10\); \(x\ne-21\); \(x\ne-34\)
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Leftrightarrow x+34-x-3=x\)
\(\Leftrightarrow x=31\)( thỏa mãn )
Vậy \(x=31\)
\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)
\(=3-\left(-1\right)\)
\(=4\)
b) \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)
\(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)
\(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)
\(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)
\(=\frac{199}{16}:\left(12-2\right)\)
\(=\frac{199}{16}:10\)
\(=\frac{199}{160}\)
c) \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)
\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)
\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)
Vế trái: 4/(x+2).(x+6)+7/(x+6).(x+13)
<=>1/x+2 -1/x+6 +1/x+6 -1/x+13
<=>1/x+2-1/x+13
=> 1/x+2-1/x+13=2x+1/(x+2).(x+16) -3/(x+13).(x+16)
<=>1/x+2 - 1/x+13 + 1/x+13 - 1/x+16=2x+1/(x+2).(x+16)
<=>1/x+2 - 1/x+16=2x+1/(x+2).(x+16)
<=> 14/(x+2).(x+16)= 2x+1/(x+2).(x+16)
<=> 2x+1=14
<=> 2x=14-1
<=> 2x=13
<=> x=13:2
<=> x=13/2
Vậy x=13/2
Chúc bạn học tốt
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)