K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

a) \(8x^3-x=0\)

\(\Leftrightarrow x\left(8x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\8x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{\frac{1}{8}}\end{cases}}\)

b) \(x\left(x-5\right)=2x-10\)

\(\Leftrightarrow x\left(x-5\right)=2\left(x-5\right)\)

\(\Leftrightarrow x\left(x-5\right)-2\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)

6 tháng 10 2019

c) \(3x^2+30x=-75\)

\(\Leftrightarrow x^2+10x=-25\)

\(\Leftrightarrow x^2+10x+25=0\)

\(\Leftrightarrow\left(x+5\right)^2=0\)

\(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)

21 tháng 10 2016

8x2+30x+7=0

 8x2+16x+14x+7=0

8x(x+2) +7(x+2)=0

(8x+7)(x+2)=0

=>\(\orbr{\begin{cases}8x+7=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{7}{8}\\x=-2\end{cases}}}\)

21 tháng 10 2016

a)

4x2-8x+4=2(1-x)(x+1)

4x2-8x+4-2+2x2=0

6x2-8x+2=0

2(3x2-4x+1)=0

3x2-3x-x+1=0

3x(x-1) -(x-1)=0

(3x-1)(x-1)=0

\(\Rightarrow\orbr{\begin{cases}3x-1=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}}\)

29 tháng 8 2017

Bài 1

A,7x − 6x 2 − 2 = −(6x 2 − 7x + 2)

= −(6x 2 − 3x − 4x + 2)

= −[3x(2x − 1) − 2(2x − 1)] = −(3x − 2)(2x −1)

b,\(2x^2+3x-5\)

=\(2x^2-2x+5x-5\)=\(2x\left(x-1\right)+5\left(x-1\right)=\left(2x+5\right)\left(x-1\right)\)

7 tháng 10 2017

a/ x2 + 3x - 18 = 0

x2 -3x + 6x - 18 = 0

x(x-3) + 6(x-3) = 0

(x-3)(x+6) = 0

Suy ra: x - 3 = 0 hoặc x + 6 = 0

hay x = 3 hoặc x = - 6

Vậy x thuộc {3;-6}.

b/ 8x2 + 30x + 7 = 0

8x2 + 2x + 28x + 7 = 0

2x(4x+1) + 7(4x+1) = 0

(4x+1)(2x+7) = 0

Suy ra: 4x + 1 = 0 hoặc 2x + 7 = 0

hay x = -1/4 hoặc x = -7/2

Vậy x thuộc {-1/4; -7/2}.

c/ x3 - 11x2 + 30x = 0

x(x2 - 11x + 30) = 0

x(x2 - 5x - 6x + 30) = 0

x.[x(x-5) - 6(x-5)] = 0

x(x-5)(x-6) = 0

Suy ra: x = 0; x - 5 = 0 hoặc x - 6 = 0

hay x = 0; x =5; x =6

Vậy x thuộc {0;5;6}.

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

18 tháng 3 2020

rrrrrrrr\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

12 tháng 7 2019

g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)

\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)

\(\Leftrightarrow-5\left(4x+3\right)=0\)

\(\Leftrightarrow4x+3=0\)

\(\Leftrightarrow4x=-3\)

\(\Leftrightarrow x=\frac{-3}{4}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)

12 tháng 7 2019

h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)

\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)

\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)

\(\Leftrightarrow-9x+2x-3-10x=30\)

\(\Leftrightarrow-17x-3=30\)

\(\Leftrightarrow-17x=33\)

\(\Leftrightarrow x=\frac{-33}{17}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)

13 tháng 6 2017

a, A= \(\left(2x+5\right)^3-30x\left(2x+5\right)-8x^3\)

A\(=8x^3+60x^2+150x+125-60x^2-150x-8x^3\)

A=125.

Vậy biểu thức A có giá trị là 125, không phụ thuộc vào biến x (đpcm).

b, B=\(\left(3x+1\right)^2+12x-\left(3x+5\right)^2+2\left(6x+3\right)\)

B=\(9x^2+6x+1+12x-9x^2-30x-25+12x+6\)

B=(6x+12x+12x-30x) + (1-25+6)

B= -18.

Vậy giá trị biểu thức B là -18, không phụ thuộc vào biến x.

13 tháng 6 2017

a) A=(2x+5)3-30x(2x+5)-8x3

<=> A=8x3+60x2+150x+125-60x2-150x-8x3

<=> A=125

=> Biểu thức A không phụ thuộc vào biến x.

b)