Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)
\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)
\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)
\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)
\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)
\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)
\(\Leftrightarrow4x^2+6x-51=0\)
\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)
a) (2x - 1)(x^2 - 1 + 1) = 2x^3 - 3x^2 + 2
(2x - 1).x^2 = 2x^3 - 3x^2 + 2
2x^3 - x^2 = 2x^3 - 3x^2 + 2
-x^2 = -3x^2 + 2
2x^2 = 2
x^2 = 1
=> x = 1; -1
b) (x + 2)(x + 2) - (x - 2)(x - 2) = 8x
(x + 2)^2 - (x - 2)^2 = 8x
x^2 + 4x + 4 - x^2 + 4x - 4 = 8x
8x = 8x
=> x thuộc N*
c) (x + 1)(x + 2)(x + 5) - x^3 - 8x^2 = 27
x^3 + 5x^2 + 2x^3 + 10x + x^2 + 5x + 2x + 10x - x^3 - x^2 = 27
17x + 10 = 27
17x = 27 - 10
17x = 17
=> x = 1
d) (x + 1)(x^2 + 2x + 4) - x^3 - 3x^2 + 16 = 0
x^3 + 2x^2 + 4x + x^2 + 2x + 4 - x^3 - 3x^2 + 16 = 0
6x + 20 = 0
6x = -20
x = -20/6
=> x = -10/3
\(a.x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
\(\Leftrightarrow x\left(x^2-5^2\right)-\left(x^3+2^3\right)=3\)
\(\Leftrightarrow x^3-25x-x^3-8=3\)
\(\Leftrightarrow x^3-x^3-25x=8+3\)
\(\Leftrightarrow x=\frac{11}{-25}\)
Vậy x có nghiệm là \(\frac{-11}{25}.\)
\(\)
b. x4 - x2 - 2x - 1
=x4-(x2+2x+1)
=x4-(x+1)2
=(x2-x-1)(x2+x+1)
d. ( x2 + 3x + 1 ) ( x2 + 3x - 3 ) - 5
Đặt x2+3x=y
=> (y+1)(y-3)-5=y2-2y-8=(y-1)2-9
=(y-4)(y+2)
=(x2+3x-4)(x2+3x+2)=(x-1)(x+4)(x+1)(x+2)
x2 - 25 - (x + 5) = 0
<=> (x - 5)(x + 5) - (x + 5) = 0
<=> (x + 5)( x - 5 - 1) = 0
<=> (x + 5)( x - 6) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)
(2x - 1)2 - (4x2 - 1) = 0
<=> (2x - 1)(2x - 1 - 2x - 1) = 0
<=> - 4x(2x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
1.
a) khong bit bạn xem đề sai k
b) x2 -4x +4 - (x+3)(x-3) = 0
<=> x2 -4x + 4 - x2 +9 = 0
<=> -4x = -13 <=> x= 13/4
c) x2 -3x +2 = 0
<=> x2 -x -2x +2 = 0
<=> x(x-1) - 2( x-1) = 0
<=> (x-1)(x-2) = 0 <=> x = 1 hoặc 2
2.
a) x4 -8 = (x2 -4)(x2 +4) = (x-2)(x+2)(x2 +4)
b)x2 -y2 -2x+2y = (x-y)(x+y) - 2(x-y) = (x-y)(x+y-2)
c)x2 - 5x +6 = x2 -3x -2x +6 = x(x-3) - 2(x-3) = (x-2)(x-3)
a) \(\left(3x-1\right)^2+ \left(x+3\right)^2-5\left(2x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow-15x+55=0\)
\(\Leftrightarrow-15x=0-55\)
\(\Leftrightarrow-15x=-55\)
\(\Leftrightarrow x=\frac{-55}{-15}\)
\(\Rightarrow x=\frac{11}{3}\)
b) \(x^2-4x+4-\left(x+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow x^2-4x-\left(x+3\right)\left(x-3\right)=4-0\)
\(\Leftrightarrow x^2-4x-\left(x+3\right)\left(x-3\right)=4\)
\(\Leftrightarrow4x+9=4\)
\(\Leftrightarrow4x=4+9\)
\(\Leftrightarrow4x=13\)
\(\Rightarrow x=\frac{13}{4}\)
\(4x\left(x-1\right)-3\left(x^2-5\right)-x^2=x-3-\) \(\left(x+4\right)\)\(\)
<=> \(4x^2-4x-3x^2+15-x^2=x-3-x-4\)
<=> \(-4x+15=-7\)
<=> \(x=\frac{11}{2}\)
\(\left(2x^2-3x+1\right)\left(x^2-5\right)-\left(x^2-x\right)\left(2x^2-x-10\right)=5\)
<=> \(2x^4-10x^2-3x^3+15x+x^2-5-\left(2x^4-x^3-10x^2-2x^3+x^2+10x\right)=5\)
<=> \(2x^4-10x^2-3x^3+15x+x^2-5-2x^4+x^3+10x^2+2x^3-x^2-10x=5\)
<=> \(5x-5=5\)
<=> \(5x=10\)
<=> \(x=2\)