Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu này mih biết làm nhưng pp nhẩm nghiệm là sao bạn
bạn có thể cho mih vd đi\ược ko
1. Đa thức x3 - x2 - 4 có nghiệm là x = 2 nên ta thêm, bớt, tách, nhóm làm xuất hiện nhân tử x - 2:
\(x^3-x^2-4=x^3-2x^2+x^2-2x+2x-4\)\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)=\left(x-2\right)\left(x^2+x+2\right).\)
2. Làm tương tự.
a/x3-x2-4=x3-2x2+x2-22=x2(x-2)+(x+2)(x-2)
=(x2+x+2)(x-2)
b/x3+x2+4=x3+2x2-x2-2x+2x+4=x2(x+2)-x(x+2)+2(x+2)
=(x2_x+2)(x+2)
a) 2x3-5x2+8x-3
=2x3-x2-4x2+2x+6x-3
=x2(2x-1)-2x(2x-1)+3(2x-1)
=(2x-1)(x2-2x+3)
a,2x3-5x2+8x-3
=2x3-x2-4x2+2x+6x-3
=x2(2x-1)-2x(2x-1)+3(2x-1)
=(2x-1)(x2-2x+3)
a) 2x + 2y - x2 - xy
= 2(x + y) + x(x + y)
= (x + y) (x + 2)
mk ko bít phân tích đúng ko đúng thì t i c k nhé!! 245433463463564564574675687687856856846865855476457
a)\(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
b)\(\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)
\(=\left(x+3\right)\left[\left(x+3\right)-\left(2x-5\right)\right]\)
\(=\left(x+3\right)\left(8-x\right)\)
c)\(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)
\(=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x-2\right)^2\)
\(=\left(3x+2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]+\left(3x-2\right)\left[\left(3x-2\right)-\left(3x+2\right)\right]\)
\(=4\left(3x+2\right)-4\left(3x-2\right)\)
\(=4\left(3x+2-3x+2\right)\)
=4.4=16
a, 3x3-3x2+5x+11=0
<=>3x3+3x2-6x3-6x+11x+11=0
<=>3x2.(x+1)-6x.(x+1)+11.(x+1)=0
<=>(x+1)(3x2-6x+11)=0
=>x+1=0 hoặc 3x2-6x+11=0
*x+1=0 <=> x=-1
*3x2-6x+11=0
<=>2x2+x2-6x+9+2=0
<=>2x2+(x-3)2+2=0 (vô lí)
Vậy tập nghiêm của PT là S={-1}
b, 2x3-x2+3x-4=0
<=>2x3-2x2+x2-x+4x-4=0
<=>2x2.(x-1)+x.(x-1)+4.(x-1)=0
<=>(x-1)(2x2+x+4)=0
<=>x-1=0 hoặc 2x2+x+4=0
*x-1=0 <=>x=1
*2x2+x+4=0
<=>x2+x2+x+1+3 = 0 ( vô lí vì \(x^2+x+1>0\)(bình phương thiếu) )
Vậy tập nghiệm của PT là S={1}
a) Ta thấy x = 1 là nghiệm của \(f\left(x\right)=3x^3-x^2+2x-4\) nên \(f\left(x\right)\) sẽ có dạng \(f\left(x\right)=\left(x-1\right)\left(ax^2+bx+c\right)\)
Bằng cách chia f(x) cho x - 1 được các hệ số tương ứng : a = 3 , b = 2 , c =4
=> f(x) = (x-1)(3x2+2x+4)
b) Tương tự, ta cũng phân tích được : x3-100x2+50x+49=(x-1)(x2-99x-49)
Mình nghĩ vậy thôi .Sorry nha . Tại vì tìm x thì phải bằng bao nhiêu chứ