K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

Bài 1:

a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)

\(114x^2+216x+81=114x^2-480x+400\)

\(144x^2+216x=144x^2-480x+400-81\)

\(114x^2+216=114x^2-480x+319\)

\(696x=319\)

\(\Rightarrow x=\frac{11}{24}\)

b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)

\(\Rightarrow x=1\)

c) \(x^5+x^4+x^3+x^2+x+1=0\)

\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow x=-1\)

Bài 2:

a) \(5x^3-7x^2-15x+21=0\)

\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)

\(\Rightarrow x=\frac{7}{5}\)

b) \(\left(x-3\right)^2=4x^2-20x+25\)

\(x^2-6x+9-25=4x^2-20x+25\)

\(x^2-6x+9=4x^2-20x+25-25\)

\(x^2-6x-16=4x^2-20x\)

\(x^2+14x-16=4x^2-4x^2\)

\(-3x^2+14x-16=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)

\(x^2-2x=x-4\)

\(x^2-2x=x-4+4\)

\(x^2-2x=x-x\)

\(x^2-3x=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)

\(-48x^2+56x-24=-24\)

\(-48x^2+56x=-24+24\)

\(-48x^2+56=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)

mình ko chắc

Bài 1

A, 11/24

B, -1

chúc bn học tốt

1 tháng 10 2016

1/ x² - 5x + 6 = 0 
⇔ x² - 2x - 3x + 6 = 0 
⇔ x(x - 2) - 3(x - 2) = 0 
⇔ (x - 2)(x - 3) = 0 
⇒S = {2 ; 3}.

1 tháng 10 2016

1) \(x^2+5x+6=0\)

\(\Leftrightarrow x^2+2x+3x+6=0\)

\(\Leftrightarrow x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=-3\end{array}\right.\)

2) \(2\left(x+3\right)-x^2-3x=0\)

\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+3=0\\2-x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=2\end{array}\right.\)

3) \(x^2+4x+3=0\)

\(\Leftrightarrow x^2+x+3x+3=0\)

\(\Leftrightarrow x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=-3\end{array}\right.\)

4) \(2x^2-3x-5=0\)

\(\Leftrightarrow2x^2+2x-5x-5=0\)

\(\Leftrightarrow2x\left(x+1\right)-5\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\2x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=\frac{5}{2}\end{array}\right.\)

12 tháng 7 2019

#)Giải :

Bài 1 :

a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)

\(\Leftrightarrow144x^2+216x+81=144x^2-480x+400\)

\(\Leftrightarrow144x^2+216=144x^2-480x+319\)

\(\Leftrightarrow696x=319\)

\(\Leftrightarrow x=\frac{11}{24}\)

b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)

\(\Leftrightarrow x=1\)

c) \(x^5+x^4+x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x=-1\)

12 tháng 7 2019

a) 9(4x + 3)2 = 16(3x - 5)2

=> [3(4x + 3)]2 - [4(3x - 5)]2 = 0

=> (12x + 9)2 - (12x - 20)2 = 0

=> (12x + 9 - 12x + 20)(12x + 9 + 12x - 20) = 0

=> 29.(24x - 11) = 0

=> 2x - 11 = 0

=> 2x = 11

=>  x = 11 : 2 = 11/2

b) (x3 - x2)2 - 4x2 + 8x - 4 = 0

=> (x3 - x2)2 - (2x - 2)2 = 0

=> (x3 - x2 - 2x + 2)(x3 - x2 + 2x - 2) = 0

=> [x2(x - 1) - 2(x - 1)][x2(x - 1) + 2(x - 1)] = 0

=> (x2 - 2)(x - 1)(x2 + 2)(x - 1) = 0

=> (x2 - 2)(x2 + 2)(x - 1)2 = 0

=> x2 - 2 = 0

hoặc : x2 + 2 = 0

hoặc : (x - 1)2 = 0

=> x2 = 2

 hoặc : x2 = -2 (vl)

hoặc : x - 1 = 0

=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

hoặc : x = 1

Vậy ...

c) x + x4 + x3 + x2 + x + 1 = 0

=> x4(x +1) + x2(x + 1) + (x + 1) = 0

=> (x4 + x2 + 1)(x + 1) = 0

=> \(\orbr{\begin{cases}x^4+x^2+1=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x^4+x^2=-1\left(vl\right)\\x=-1\end{cases}}\) (vì x4 \(\ge\)\(\forall\)x; x2 \(\ge\)\(\forall\)x => x4 + x2 \(\ge\)\(\forall\)x)

=> x = -1

6 tháng 9 2020

1. (x + 2)(x2 - 2x + 4) - (x3 + 2x2) = 5

=> x(x2 - 2x + 4) + 2(x2 - 2x + 4) - x3 - 2x2 - 5 = 0

=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 - 2x2 - 5 = 0

=> (x3 - x3) + (-2x2 + 2x2 - 2x2) + (4x - 4x) + (8 - 5) = 0

=> -2x2 + 3 = 0

=> -2x2 = -3

=> x2 = 3/2

=> x = \(\pm\sqrt{\frac{3}{2}}\)

2. \(\left(x+5\right)^2-6=0\)

=> x2 + 10x + 25 - 6 = 0

=> x2 + 10x + 19 = 0

=> x vô nghiệm(do mình không để căn nên ghi vô nghiệm thôi nhá)

3. \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=2x\)

=> x(x2 - 3x + 9) + 3(x2 - 3x + 9) - x3 - 2x = 0

=> x3 - 3x2 + 9x + 3x2 - 9x + 27 - x3 - 2x = 0

=> (x3 - x3) + (-3x2 + 3x2) + (9x - 9x - 2x) + 27 = 0

=> -2x + 27 = 0

=> -2x = -27

=> x = 27/2

4. \(\left(x-2\right)^3-x^3+6x^2=7\)

=> x3 - 6x + 12x - 8 - x3 + 6x2 = 7

=> (x3 - x3) + (-6x2 + 6x2) + 12x - 8 = 7

=> 12x - 8 = 7

=> 12x = 15

=> x = 5/4

5. \(3\left(x-2\right)^2+9\left(x-1\right)-3\left(x^2+x-3\right)=12\)

=> 3x2 - 12x + 12 + 9x - 9 - 3x2 - 3x + 9 = 12

=> (3x2 - 3x2) + (-12x + 9x - 3x) + (12 - 9 + 9) = 12

=> -6x + 12 = 12

=> -6x = 0

=> x = 0

6. \(\left(4x+3\right)^2-\left(4x-3\right)^2-5x-2=0\)

=> 48x - 5x - 2 = 0

=> 43x - 2 = 0

=> 43x = 2

=> x = 2/43

Còn bài cuối tự làm :>

6 tháng 9 2020

Anh Sang làm cầu kì quá ;-;

1. ( x + 2 )( x2 - 2x + 4 ) - ( x3 + 2x2 ) = 5

<=> x3 + 8 - x3 - 2x2 = 5

<=> 8 - 2x2 = 5

<=> 2x2 = 3

<=> x2 = 3/2

<=> \(x^2=\left(\pm\sqrt{\frac{3}{2}}\right)^2\)

<=> \(x=\pm\sqrt{\frac{3}{2}}\)

2. ( x + 5 )2 - 6 = 0

<=> ( x + 5 )2 - ( √6 )2 = 0

<=> ( x + 5 - √6 )( x + 5 + √6 ) = 0

<=> \(\orbr{\begin{cases}x+5-\sqrt{6}=0\\x+5+\sqrt{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-5\\x=-\sqrt{6}-5\end{cases}}\)

3. ( x + 3 )( x2 - 3x + 9 ) - x3 = 2x

<=> x3 + 27 - x3 = 2x

<=> 27 = 2x

<=> x = 27/2

4. ( x - 2 )3 - x3 + 6x2 = 7

<=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7

<=> 12x - 8 = 7

<=> 12x = 15

<=> x = 15/12 = 5/4

5. 3( x - 2 )2 + 9( x - 1 ) - 3( x2 + x - 3 ) = 12

<=> 3( x2 - 4x + 4 ) + 9x - 9 - 3x2 - 3x + 9 = 12

<=> 3x2 - 12x + 12 + 6x - 3x2 = 12

<=> -6x + 12 = 12

<=> -6x = 0

<=> x = 0

6. ( 4x + 3 )2 - ( 4x - 3 )2 - 5x - 2 = 0

<=> 16x2 + 24x + 9 - ( 16x2 - 24x + 9 ) - 5x - 2 = 0

<=> 16x2 + 24x + 9 - 16x2 + 24x - 9 - 5x - 2 = 0

<=> 43x - 2 = 0

<=> 43x = 2

<=> x = 2/43

7, ( 4x + 7 )( 2 - 3x ) - ( 6x + 2 )( 5 - 2x ) = 0

<=> -12x2 - 13x + 14 - ( -12x2 + 26x + 10 ) = 0

<=> -12x2 - 13x + 14 + 12x2 - 26x - 10 = 0

<=> -39x + 4 = 0

<=> -39x = -4

<=> x = 4/39

27 tháng 9 2020

a) \(3x^3-12x=0\)

=> \(3x\left(x^2-4\right)=0\)

=> \(\orbr{\begin{cases}3x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)

b) \(x^2\left(x-3\right)+12-4x=0\)

=> \(x^2\left(x-3\right)+\left(-4x+12\right)=0\)

=> \(x^2\left(x-3\right)-4x+12=0\)

=> \(x^2\left(x-3\right)-4\left(x-3\right)=0\)

=> \(\left(x-3\right)\left(x^2-4\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)

c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)

=> \(\left[3x-1-\left(2x-3\right)\right]\left(3x-1+2x-3\right)=0\)

=> \(\left(3x-1-2x+3\right)\left(3x-1+2x-3\right)=0\)

=> \(\left(x+2\right)\left(5x-4\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{4}{5}\end{cases}}\)

d) \(x^2-4x-21=0\)

=> \(x^2+3x-7x-21=0\)

=> \(x\left(x+3\right)-7\left(x+3\right)=0\)

=> (x + 3)(x - 7) = 0 => x = -3 hoặc x = 7

e) 3x2 - 7x - 10 = 0

=> 3x2 + 3x - 10x - 10 = 0

=> 3x(x + 1) - 10(x + 1) = 0

=> (x + 1)(3x - 10) = 0

=> x = -1 hoặc x = 10/3

27 tháng 9 2020

a) \(3x^3-12x=0\)

\(\Leftrightarrow3x\left(x^2-4\right)=0\)

\(\Leftrightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow x\in\left\{-2;0;2\right\}\)

b) \(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow x\in\left\{-2;2;3\right\}\)

c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(5x-4\right)=0\)

\(\Leftrightarrow x\in\left\{-2;\frac{4}{5}\right\}\)

27 tháng 9 2020

Ta có : 3x3 - 12x = 0

=> 3x(x2 - 4) = 0

=> x(x - 2)(x + 2) = 0

=> \(x\in\left\{0;2;-2\right\}\)

b) x2(x - 3) + 12 - 4x = 0

=> x2(x - 3) - 4(x - 3) = 0

=> (x2 - 4)(x - 3) = 0

=> \(\orbr{\begin{cases}x^2-4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm2\\x=3\end{cases}}\)

Vậy \(x\in\left\{-2;2;3\right\}\)

c) (3x - 1)2 - (2x - 3)2 = 0

=> (3x - 1 - 2x + 3)(3x - 1 + 2x - 3) = 0

=> (x + 2)(5x - 4) = 0

=> \(\orbr{\begin{cases}x+2=0\\5x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0,8\end{cases}}\)

Vậy \(x\in\left\{-2;0,8\right\}\)

d) x2 - 4x - 21 = 0

=> x2 - 7x + 3x - 21 = 0

=> x(x - 7) + 3(x - 7) = 0

=> (x + 3)(x - 7) = 0

=> \(\orbr{\begin{cases}x+3=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=7\end{cases}}\)

Vậy \(x\in\left\{-3;7\right\}\)

e) 3x2 - 7x - 10 = 0

=> 3x2 + 3x - 10x - 10 = 0

=> 3x(x + 1) - 10(x + 1) = 0

=> (3x - 10)(x + 1) = 0

=> \(\orbr{\begin{cases}3x-10=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{10}{3}\\x=-1\end{cases}}\)

Vậy \(x\in\left\{\frac{10}{3};-1\right\}\)

27 tháng 8 2020

\(x^3+x^2+x=3\)

\(\Leftrightarrow x^3+x^2+x-3=0\)

\(\Leftrightarrow x^3+2x^2+3x-x^2-2x-3=0\)

\(\Leftrightarrow x\left(x^2+2x+3\right)-\left(x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+2x+3=0\end{cases}}\)

+) x - 1 = 0 <=> x = 1

+) x2 + 2x + 3 = 0

Mà \(x^2+2x+3=\left(x+1\right)^2+2\ge2\)

=> Không có x tm trong th này

Vậy pt có nghiệm là x = 1

27 tháng 8 2020

x3 + x2 + x = 3

<=> x3 + x2 + x - 3 = 0

<=> x3 + 2x2 - x2 + 3x - 2x - 3 = 0

<=> ( x3 + 2x2 + 3x ) - ( x2 + 2x + 3 ) = 0

<=> x( x2 + 2x + 3 ) - 1( x2 + 2x + 3 ) = 0

<=> ( x - 1 )( x2 + 2x + 3 ) = 0

<=> \(\orbr{\begin{cases}x-1=0\\x^2+2x+3=0\end{cases}}\)

+) x - 1 = 0 => x = 1

+) x2 + 2x + 3 = ( x2 + 2x + 1 ) + 2 = ( x + 1 )2 + 2 ≥ 2 > 0 ∀ x 

Vậy phương trình có nghiệm duy nhất là x = 1

21 tháng 10 2017

b.\(x^3+6x^2+11x+6=0\)

\(\Leftrightarrow x^3+x^2+5x^2+5x+6x+6=0\)

\(\Leftrightarrow x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+3x+6\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)hoặc \(x+2=0\)hoặc \(x+3=0\)

\(\Leftrightarrow\)...... tự viết nha bn

21 tháng 10 2017

a)   (6x5 - 3x2):3x - (4x2 + 8x):4x = 5 

\(\Rightarrow\)2x4 - x - x - 2 = 5

\(\Rightarrow\)2(x4 - x -1) = 5

\(\Rightarrow\)x- 2x2  + 1 + 2x2 - 2 = 2.5

\(\Rightarrow\)(x2 - 1)2 + 2(x2 - 1)  + 1 - \(\frac{7}{2}\) = 0

\(\Rightarrow\)x4 = \(\frac{7}{2}\)

\(\Rightarrow\)x  = \(\pm\)\(\sqrt[4]{\frac{7}{2}}\) 

b)   x3 + 6x2 + 11x +6 = 0

\(\Rightarrow\)x3 + 6x2 + 12x + 8 - x - 2 = 0

\(\Rightarrow\)(x + 2)3 - (x + 2) = 0

\(\Rightarrow\)(x + 2)(x-1)(x+3)=0

\(\Rightarrow\)x + 2 = 0    \(\Rightarrow\)x = -2 

         x - 1 =0        \(\Rightarrow\)x = 1

         x + 3 = 0       \(\Rightarrow\)x = -3

Vay.....