Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}:2x=-\frac{1}{3}\)
\(2x=-\frac{3}{2}\)
\(x=-\frac{3}{4}\)
Từ gt,suy ra : (x - 2)(2 - x) = -16.4
-(x - 2)2 = -64
(x - 2)2 = 64
\(\Rightarrow\orbr{\begin{cases}x-2=-8\\x-2=8\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\x=10\end{cases}}}\)
\(x=-16.4=-64\)
\(x^2=-8^2\)
Vay: x=-8
Ma theo de bai x-2
Nen ta lay x+2
x+2=-8+2=-6
=>\(x=-6\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x+1}{2}=\frac{y+3}{4}\)\(=\frac{z+5}{6}\)\(=\frac{2.\left(x+1\right)+3.\left(y+3\right)+4.\left(z+5\right)}{2.2+3.4+4.6}\)
\(=\frac{2x+2+3y+9+4z+20}{4+12+24}\)\(=\frac{\left(2x+3y+4z\right)+\left(2+9+20\right)}{40}\)
\(=\frac{9+31}{40}=\frac{40}{40}=1\)
Cứ thế là tìm x+1 rồi tìm x
y+3 y
x+5 z
a) \(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(\Leftrightarrow\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=9\)
b) \(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^{22}\)
\(\Leftrightarrow\left(\frac{1}{9}\right)^x=\left(\frac{1}{3}\right)^{66}\)
\(\Leftrightarrow x=66\)
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)
\(\frac{x+5}{4x+3}=\frac{10-x}{3y-6}=\frac{x+5+10-x}{4x+3+3y-6}=\frac{15}{4x+3y-3}=\frac{8x-9}{4x+3y-3}\)
\(\Rightarrow8x-9=15\Rightarrow x=3\)
\(\frac{x-4}{2021}+\frac{x-3}{2020}=\frac{x-2}{2019}+\frac{x-1}{2018}\)
\(\Leftrightarrow\left(\frac{x-4}{2021}+1\right)+\left(\frac{x-3}{2020}+1\right)=\left(\frac{x-2}{2019}+1\right)+\left(\frac{x-1}{2018}+1\right)\)
\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}=\frac{x+2017}{2019}+\frac{x+2017}{2018}\)
\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}-\frac{x+2017}{2019}-\frac{x+2017}{2018}=0\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)=0\)
Mà \(\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)\ne0\)
\(\Leftrightarrow x+2017=0\)
\(\Leftrightarrow x=-2017\)
Vậy ..
=> (x-4/2021 +1) + (x-3/2020 +1) = (x-2/2019 +1)+ (x-1/2018 +1)
=> x+2017/2021 + x+2017/2020 = x+2017/2019 + x+2017/2018
=> x+2017/2018 + x+2017/2018 - x+2017/2020 - x+2017/2021 = 0
=> (x+2017).(1/2018+1/2019+1/2020+1/2021) = 0
=> x+2017 = 0 ( vì 1/2018+1/2019+1/2020+1/2021 > 0 )
=> x=-2017
Vậy x=-2017
k mk nha
(x+1)2= -4.(-9)
(x+1)2=36
\(\hept{\begin{cases}x+1=6\\x+1=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}\)
\(\frac{x+1}{-9}=\frac{-4}{x+1}\)
\(\Rightarrow(x+1)^2=(-4).(-9)\)
\(\Rightarrow(x+1)^2=36\)
\(\Rightarrow(x+1)^2=6^2\)
\(\Rightarrow x+1=6\)
\(\Rightarrow x=5\)