Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 5n+5n+2=650
=>5n+5n.52=650
=>5n(1+25)=650
=>5n.26=650
=>5n=25
=>5n=52
=>n=2
Vậy n=2
Bài 2 : Bài giải
a, \(2008^n=1=2008^0\)
\(\Rightarrow\text{ }n=0\)
b, \(32^{-n}\cdot16^n=1024\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n=2^{10}\)
\(2^{-5n}\cdot2^{4n}=2^{10}\)
\(2^{-n}=2^{10}\)
\(\Rightarrow\text{ }n=-10\)
c, \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n=\frac{4\cdot4^5}{3\cdot3^5}\cdot\frac{6\cdot6^5}{2\cdot2^5}=\frac{4^6}{3^6}\cdot\frac{6^6}{2^6}=2^6\cdot2^6=2^{12}\)
\(\Rightarrow\text{ }n=12\)
Bài 1 :
a) x < 0
b) x > 0
c) <=> 3 + |3x - 1| = 5
<=> |3x - 1| = 5 - 3 = 2
<=> 3x - 1 = 2 hoặc -3x + 1 = 2
<=> 3 x = 3 hoặc -3x = 1
<=> x = 1 hoặc x = -1/3
Bài 2 :
a) 27 = 33 < 3n < 243 = 35
<=> 3 < n < 5
Vì n thuộc N* nên n thuộc {4; 5}
b) 32 = 25 < 2n < 128 = 27
<=> 5 < n < 7. Vì n thuộc N* nên n = 6
c) 125 = 5 . 25 = 5 . 52 < 5.5n < 5 . 125 = 5 . 53
<=> 2 < n < 3. Vì n thuộc N* nên n = 3
Câu 1:
Ta có: \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2=\left(x-1\right)^x\cdot\left(x-1\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2-\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left[1-\left(x-1\right)\right]\cdot\left[1+\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(1-x+1\right)\cdot\left(1+x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(2-x\right)\cdot x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\2-x=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=2\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy: x\(\in\){0;1;2}
Câu 2:
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
Do đó: \(\left(x+2\right)^2+2\left(y-3\right)^2\ge0\forall x,y\)
mà \(\left(x+2\right)^2+2\left(y-3\right)^2< 4\)
và các số chính phương nhỏ hơn 4 là 0 và 1
nên \(\left(x+2\right)^2+2\left(y-3\right)^2\in\left\{0;1;2\right\}\)
*Trường hợp 1: (x+2)2=2(y-3)2=0
\(\Leftrightarrow\left(x+2\right)^2+2\left(y-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)
*Trường hợp 2: \(\left(x+2\right)^2=0\) và \(\left(y-3\right)^2=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\\left[{}\begin{matrix}y-3=1\\y-3=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\\left[{}\begin{matrix}y=4\\y=2\end{matrix}\right.\end{matrix}\right.\)
*Trường hợp 3: \(\left(x+2\right)^2=1\) và \(\left(y-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+2=1\\x+2=-1\end{matrix}\right.\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\\y=3\end{matrix}\right.\)
Vậy: (x,y)\(\in\){(-2;3);(-2;4);(-2;2);(-1;3);(-3;3)}
Câu 1 bạn làm nhầm rồi.
$(x-1)^x(x-1)^2=(x-1)^x(x-1)^4$ không tương đương với $(x-1)^2=(x-1)^4$
Mà từ đây suy ra \(\left[\begin{matrix} (x-1)^x=0\\ (x-1)^2=(x-1)^4\end{matrix}\right.\)
Đối với TH $(x-1)^x=0$ thì có thể xảy ra 2TH: $x-1=0$ hoặc $x=0$
\(32^{-x}\times16^x=1024\\ 16^{-x}\times2^{-x}\times16^x=2^{10}\\ \left(16^{-x}\times16^x\right)\times2^{-x}=2^{10}\\ 2^{-x}=2^{10}\\ \Rightarrow-x=10\\ x=-10\) \(\left(\dfrac{4}{5}\right)^{2x+7}=\dfrac{625}{256}\\ \left(\dfrac{4}{5}\right)^{2x+7}=\left(\dfrac{4}{5}\right)^{-4}\\ \Rightarrow2x+7=4\\ 2x=-3\\ x=-1,5\)
\(\frac{2^{4-x}}{16^5}=32^6\)
=> \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
=> \(\frac{2^{4-x}}{2^{20}}=2^{30}\)
=> \(2^{4-x}=2^{30}.2^{20}\)
=> \(2^{4-x}=2^{50}\)
=> 4 - x = 50
=> x = 4 - 50 = -46
\(\frac{3^{2x+3}}{9^3}=9^{14}\)
=> \(\frac{3^{2x+3}}{\left(3^2\right)^3}=\left(3^2\right)^{14}\)
=> \(\frac{3^{2x+3}}{3^6}=3^{28}\)
=> \(3^{2x+3}=3^{28}.3^6\)
=> \(3^{2x+3}=3^{34}\)
=> 2x + 3 = 34
=> 2x = 34 - 3
=> 2x = 31
=> x = 31/2
a: \(x^6+x^4=0\)
\(\Leftrightarrow x^4\left(x^2+1\right)=0\)
=>x=0
b: \(32^{-x}\cdot16^x=1024\)
\(\Leftrightarrow\left(2^5\right)^{-x}\cdot\left(2^4\right)^x=1024\)
\(\Leftrightarrow2^{-5x+4x}=1024\)
\(\Leftrightarrow2^{-x}=1024\)
=>-x=10
hay x=-10(loại do x là số tự nhiên)