K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x+y}{2012}=\dfrac{xy}{2013}=\dfrac{x-y}{2014}=\dfrac{x+y+x-y}{2012+2014}=\dfrac{2x}{4026}=\dfrac{x}{2013}\)

\(hay:\dfrac{xy}{2013}=\dfrac{x}{2013}\Rightarrow xy=x\Rightarrow y=1\)

Ta có:

\(\dfrac{x+y}{2012}=\dfrac{x}{2013}\) (c/m trên)

\(\Rightarrow\left(x+y\right)2013=2012x\\ hay:\left(x+1\right)2013=2012x\\ \Rightarrow2013x+2013=2012x\\ \Rightarrow2013x-2012x=-2013\\ \Rightarrow x=-2013\)

Vậy: x=-2013

11 tháng 4 2017

hình như phải là dấu = bn ak

11 tháng 4 2017

ukm

mình ghi sai

20 tháng 10 2017

\(\frac{x-1}{2014}+\frac{x-2}{2013}-\frac{x-3}{2012}=\frac{x-4}{2011}\)

\(\frac{x-1}{2014}+\frac{x-2}{2013}-\frac{x-3}{2012}-\frac{x-4}{2011}=0\)

\(\left(\frac{x-1}{2014}-1\right)+\left(\frac{x-2}{2013}-1\right)-\left(\frac{x-3}{2012}-1\right)-\left(\frac{x-4}{2011}-1\right)=0\)

\(\frac{x-2015}{2014}+\frac{x-2015}{2013}-\frac{x-2015}{2012}-\frac{x-2015}{2011}=0\)

\(\left(x-2015\right).\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}\right)=0\)

Vì \(\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\ne0\)

\(\Rightarrow x-2015=0\)

\(x=0+2015\)

\(x=2015\)

20 tháng 10 2017

\(x=2015\)

11 tháng 8 2017

\(\dfrac{x+4}{2012}+\dfrac{x+3}{2013}=\dfrac{x+2}{2014}+\dfrac{x+1}{2015}\)

\(\Leftrightarrow\dfrac{x+4}{2012}+1+\dfrac{x+3}{2013}+1=\dfrac{x+2}{2014}+1+\dfrac{x+1}{2015}\)

\(\Leftrightarrow\dfrac{x+2016}{2012}+\dfrac{x+2016}{2013}=\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}\)

\(\Leftrightarrow\dfrac{x+2016}{2012}+\dfrac{x+2016}{2013}-\left(\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}\right)=0\)

\(\Leftrightarrow x+2016.\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}\right)\)

\(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}\ne0\)

\(\Rightarrow x+2016=0\)

\(\Rightarrow x=-2016\)

Vậy \(x=-2016\) tại biểu thức \(\dfrac{x+4}{2012}+\dfrac{x+3}{2013}=\dfrac{x+2}{2014}+\dfrac{x+1}{2015}\)

11 tháng 8 2017

Theo đề ta có: x+4/2012+x+3/2013=x+2/2014+x+1/2015
=>x+4/2012+x+3/2013-x+2/2014+x+1/2015=0
=>( x+4/2012+1)+(x+3/2013+1)-(x+2/2014+1)+(x+1/2015+1)
=>x+2016/2012+x+2016/2013-x+2016/2014-x+2016/2015=0
=>x+2016.(1/2012+1/2013-1/2014-1/2015)=0
Do 1/2012+1/2013-1/2014-1/2015>0
nên x+2016=0
=>x=-2016
Vậy x=-2016

11 tháng 10 2017

Hỏi đáp Toán

12 tháng 11 2017

Thanks nhìu nha!

16 tháng 11 2017

Ta có : \(\dfrac{x-3}{2015}+\dfrac{x-4}{2014}+\dfrac{x-5}{2013}+\dfrac{x-6}{2012}=4\)

\(\dfrac{x-3}{2015}+\dfrac{x-4}{2014}+\dfrac{x-5}{2013}+\dfrac{x-6}{2012}-4=0\)

\(\dfrac{x-3}{2015}-1+\dfrac{x-4}{2014}-1+\dfrac{x-5}{2013}-1+\dfrac{x-6}{2012}-1=0\)

\(\dfrac{x-2018}{2015}+\dfrac{x-2018}{2014}+\dfrac{x-2018}{2013}+\dfrac{x-2018}{2012}=0\)

\(\left(x-2018\right).\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}\right)=0\)

\(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}>0\)

=> x - 2018 = 0

x = 0 + 2018

x = 2018

Vậy x = 2018

6 tháng 8 2017

\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{2}{2012}+\dfrac{1}{2013}\)

\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\left(1+\dfrac{2012}{2}\right)+\left(1+\dfrac{2011}{3}\right)+...+\left(1+\dfrac{2}{2012}\right)+\left(1+\dfrac{1}{2013}\right)+1\)

\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2012}+\dfrac{2014}{2013}+\dfrac{2014}{2014}\)

\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=2014.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}\right)\)

\(\Leftrightarrow x=\dfrac{2014.\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}\)

\(\Leftrightarrow x=2014\)

Vậy \(x=2014\)

6 tháng 8 2017

\(VP=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{1}{2013}\\ =\dfrac{2012}{2}+1+\dfrac{2011}{3}+1+...+\dfrac{1}{2013}+1+1\\ =\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2013}+\dfrac{2014}{2014}\\ =2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)\)

\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)\\ x=2014\)

Vậy x = 2014

a)

\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\\ \Leftrightarrow2^x.1+2^x.2+2^x.2^2+2^x.2^3=120\\ \Leftrightarrow2^x\left(1+2+2^2+2^3\right)=120\\ \Leftrightarrow2^x=8=2^3\\ \Rightarrow x=3\)

b)

\(\dfrac{x+4}{2011}+\dfrac{x+3}{2012}=\dfrac{x+2}{2013}+\dfrac{x+1}{2014}\\ \Leftrightarrow\dfrac{x+4}{2011}+1+\dfrac{x+3}{2012}+1=\dfrac{x+2}{2013}+1+\dfrac{x+1}{2014}+1\\ \Leftrightarrow\dfrac{x+2015}{2011}+\dfrac{x+2015}{2012}=\dfrac{x+2015}{2013}+\dfrac{x+2015}{2014}\\ \Leftrightarrow\left(x+2015\right).\dfrac{1}{2011}+\left(x+2015\right).\dfrac{1}{2012}-\left(x+2015\right).\dfrac{1}{2013}-\left(x+2015\right).\dfrac{1}{2014}=0\\ \Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2013}-\dfrac{1}{2014}\right)=0\\ \Rightarrow x+2015=0\Leftrightarrow x=-2015\)

13 tháng 2 2019

a, ta co:

x-2/4=-16/2-x

=>(x-2)(2-x)=(-16).4

lai co: x-2/2-x=-1

=>x-2=(-1).(2-x)

13 tháng 2 2019

a, ta co:

x-2/4=-16/2-x

=>(x-2)(2-x)=(-16).4 (1)

lai co: x-2/2-x=-1

=>x-2=(-1).(2-x) (2)

thay(2) vao(1) ,ta co:

(2-x)^2=-64

.........(tu lam tiep nha)

10 tháng 7 2017

\(\dfrac{x+4}{2011}+\dfrac{x+3}{2012}=\dfrac{x+2}{2013}+\dfrac{x+1}{2014}\)

\(\Rightarrow\dfrac{x+4}{2011}+1+\dfrac{x+3}{2012}+1=\dfrac{x+2}{2013}+1+\dfrac{x+1}{2014}+1\)

\(\Rightarrow\dfrac{x+2015}{2011}+\dfrac{x+2015}{2012}-\dfrac{x+2015}{2013}-\dfrac{x+2015}{2014}=0\)

\(\Rightarrow\left(x+2015\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2013}-\dfrac{1}{2014}\right)=0\)

\(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2013}-\dfrac{1}{2014}\ne0\)

\(\Rightarrow x+2015=0\Rightarrow x=-2015\)

Vậy x = -2015

11 tháng 7 2017

\(\dfrac{x+4}{2011}+\dfrac{x+3}{2012}+\dfrac{x+2}{2013}+\dfrac{x+1}{2014}\)

\(\Rightarrow\dfrac{x+4}{2011}+\dfrac{x+3}{2012}-\dfrac{x+2}{2013}-\dfrac{x+1}{2014}=0\)

\(\Rightarrow\)\(\left(\dfrac{x+4}{2011}+1\right)+\left(\dfrac{x+3}{2012}+1\right)-\left(\dfrac{x+2}{2013}+1\right)-\left(\dfrac{x+1}{2014}+1\right)=0\)\(\Rightarrow\dfrac{x+2015}{2011}+\dfrac{x+2015}{2012}-\dfrac{x+2015}{2013}-\dfrac{x+2015}{2014}=0\)

\(\Rightarrow\left(x+2015\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2013}-\dfrac{1}{2014}\right)=0\)

\(\Rightarrow x+2015=0\Rightarrow x=-2015\)