Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -4x(x - 7) + 4x(x2 - 5) = 28x2 - 13
=> -4x2 + 28x + 4x2 - 20x = 28x2 - 13
=> (-4x2 + 4x2) + (28x - 20x) = 28x2 - 13
=> 8x = 28x2 - 13
=> 8x - 28x2 + 13 = 0
=> phương trình vô nghiệm
b) (4x2 - 5x)(3x + 2) - 7x(x + 5) = (-4 + x)(-2x - 3) + 12x2 + 2x2
=> 4x2(3x + 2) - 5x(3x + 2) - 7x2 - 35x = -4(-2x - 3) + x(-2x - 3) + 14x2
=> 12x3 + 8x2 - 15x2 - 10x - 7x2 - 35x = 8x + 12 - 2x2 - 3x + 14x2
=> 12x3 + (8x2 - 15x2 - 7x2) + (-10x - 35x) = (8x - 3x) + 12 + (-2x2 + 14x2)
=> 12x3 - 14x2 - 45x = 5x + 12 + 12x2
=> 12x3 - 14x2 - 45x - 5x - 12 - 12x2 = 0
=> 12x3 + (-14x2 - 12x2) + (-45x - 5x) - 12 = 0
=> 12x3 - 26x2 - 50x - 12 = 0
Làm nốt
Cái câu b sửa cái đề lại nhé dấu " = " ở chỗ (-2x = 3) là gì vậy?
1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)
\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )
2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)
\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)
\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )
Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))
1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
=> \(-4x^2+28x+4x^3-20x=28x^2-13\)
=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)
=> \(-4x^2+4x^3+8x-28x^2+13=0\)
=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)
=> \(-32x^2+4x^3+8x+13=0\)
=> vô nghiệm
2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)
=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)
=> \(-14x^2-56x+12=0\)
=> .... tự tìm
Câu c dấu bằng chỗ nào ?
\(A=x^2-4x-x\left(x-4\right)-15\)
\(=x^2-4x-x^2+4x-15=-15\) => đpcm
\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)
\(=5x^3-5x^2-5x^3+5x^2-13=-13\) => đpcm
\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)
\(=-3x^2+15x+3x^2-12x-3x+7=7\) => đpcm
\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)
\(=7x^2-35x+21-7x^2+35x-14=7\) => đpcm
\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)
\(=4x^3-20x-4x^3+20x+20=20\) => đpcm
\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) => đpcm
a) \(\left(2x+3\right)\left(x-4\right)+\left(x+5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x+10=3x^2-12x+20\)
\(\Leftrightarrow3x^2-7x-2=3x^2-12x+20\)
\(\Leftrightarrow-7x+12x=20+2\)
\(\Leftrightarrow5x=22\)
\(\Rightarrow x=\dfrac{22}{5}\)
tick cho mk nha
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
\(\Leftrightarrow24x^2+16x-9x-6-4x^2-23x-28=10x^2+3x-1\)
\(\Leftrightarrow20x^2-16x-34-10x^2-3x+1=0\)
\(\Leftrightarrow10x^2-19x-33=0\)
\(\Delta=\left(-19\right)^2-4.10.\left(-33\right)=1320\)
\(x_1=3;x_2=\dfrac{-11}{10}\)
Tick cho mk nha
\(3x^4-4x^3+2x\left(x^3-2x^2+7x\right)\)
\(=3x^4-4x^3+2x^4-4x^3+14x^2\)
\(=5x^4-8x^3+14x^2\)
3x4 - 4x3 + 2x(x3 - 2x2 + 7x )
= 3x4 - 4x3 + 2x4 _ 4x3 + 14x2
= 5x4 - 8x3 + 14x2
a) \(\left(3x-2\right)^2-\left(3x-5\right)\left(3x+2\right)=11\)
\(\Leftrightarrow\left(9x^2-12x+4\right)-\left(9x^2+6x-15x-10\right)=11\)
\(\Leftrightarrow9x^2-12x+4-9x^2-6x+15x+10=11\)
\(\Leftrightarrow-3x+3=0\)
\(\Leftrightarrow-3x=-3\)
\(\Leftrightarrow x=1\)
Vậy \(S=\left\{1\right\}\)
b) \(\left(4x-3\right)^2-\left(4x-5\right)\left(4x+5\right)=32\)
\(\Leftrightarrow\left(16x^2-24x+9\right)-\left(16x^2-25\right)=32\)
\(\Leftrightarrow16x^2-24x+9-16x^2+25=32\)
\(\Leftrightarrow-24x+2=0\)
\(\Leftrightarrow-24x=-2\)
\(\Leftrightarrow x=\dfrac{1}{12}\)
Vậy \(S=\left\{\dfrac{1}{12}\right\}\)
c) \(\left(5x-2\right)^2-\left(5x+3\right)\left(5x-5\right)=1\)
\(\Leftrightarrow\left(25x^2-20x+4\right)-\left(25x^2-25x+15x-15\right)=1\)
\(\Leftrightarrow25x^2-20x+4-25x^2+25x-15x+15=1\)
\(\Leftrightarrow-10x+18=0\)
\(\Leftrightarrow-10x=-18\)
\(\Leftrightarrow x=\dfrac{9}{5}\)
Vậy \(S=\left\{\dfrac{9}{5}\right\}\)
d) \(\left(x-4\right)^2-\left(x-7\right)\left(2x-3\right)=5-x^2\)
\(\Leftrightarrow\left(x^2-8x+16\right)-\left(2x^2-3x-14x+21\right)=5-x^2\)
\(\Leftrightarrow x^2-8x+16-2x^2+3x+14x-21=5-x^2\)
\(\Leftrightarrow x^2-8x+16-2x^2+3x+14x-21-5+x^2=0\)
\(\Leftrightarrow9x-10=0\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\dfrac{10}{9}\)
Vậy \(S=\left\{\dfrac{10}{9}\right\}\)
Cho mk hỏi vs ! Câu a bn rút gọn hay bn lm kiểu j mak tự nhiên 11 lại lôi đâu ra số 0 vậy ? Gt hộ mk vs, mk vẫn chưa hiểu cách bn lm ở câu a cho lắm !
1,
a,\(2x\left(3x^2-5x+3\right)\)
\(=6x^3-10x^2+6x\)
b,\(-2x\left(x^2+5x-3\right)\)
\(=-2x^3-10x^2+6x\)
c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)
\(=-x^4+2x^2-\dfrac{3}{2}x\)
Bài 2:
a) \(\left(2x-1\right)\left(x^2-5-4\right)\)
\(=\left(2x-1\right)\left(x^2-9\right)\)
\(=2x^3-18x-x^2+9\)
b) \(-\left(5x-4\right)\left(2x+3\right)\)
\(=-\left(10x^2+15x-8x-12\right)\)
\(=-10x^2-7x+12\)
c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-y^3\)