Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4 :
\(a,\sqrt{x-1}=2\)
=> \(x-1=2^2=4\)
=>\(x=4+1=5\)
Vậy \(x\in\left\{5\right\}\)
\(b,\sqrt{x^2-3x+2}=2\)
=> \(x^2-3x+2=2\)
=> \(x^2-3x=2-2=0\)
=>\(x.\left(x-3\right)=0\)( phân tích đa thức thanh nhân tử )
=> \(\left[{}\begin{matrix}x=0\\x-3=0=>x=0+3=3\end{matrix}\right.\)
Vậy \(x\in\left\{0;3\right\}\)
MÌNH Biết vậy thôi ,
Bài 4 :
c) \(\sqrt{4x+1}=x+1\)ĐK : \(x\ge-1\)
\(\Leftrightarrow4x+1=\left(x+1\right)^2\)
\(\Leftrightarrow x^2+2x+1-4x-1=0\)
\(\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)( thỏa )
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)
+) Xét \(x\ge2\)
\(pt\Leftrightarrow\sqrt{x-1}+1-\sqrt{x-1}+1=2\)
\(\Leftrightarrow2=2\)( luôn đúng )
+) Xét \(1\le x< 2\):
\(pt\Leftrightarrow\sqrt{x-1}+1-1+\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\)( loại )
Vậy \(x\ge2\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
<=> x + 1 = 16
<=> x = 15 (nhận)
~ ~ ~
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
<=> x + 5 = 4
<=> x = - 1 (nhận)
1: =>|2x-1|=5
=>2x-1=5 hoặc 2x-1=-5
=>2x=6 hoặc 2x=-4
=>x=3 hoặc x=-2
2: \(\Leftrightarrow2\sqrt{x-3}+\dfrac{1}{3}\cdot3\sqrt{x-3}-\sqrt{x-3}=4\)
\(\Leftrightarrow\sqrt{x-3}=2\)
=>x-3=4
hay x=7
5: \(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
=>x-2=0 hoặc x+2=1
=>x=2 hoặc x=-1
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
a) ĐK: \(x\geq 0\)
Ta có: \(\sqrt{x}+\sqrt{x+1}=1\Leftrightarrow \sqrt{x}+\sqrt{x+1}-1=0\)
\(\Leftrightarrow \sqrt{x}+\frac{(x+1)-1}{\sqrt{x+1}+1}=0\)
\(\Leftrightarrow \sqrt{x}+\frac{x}{\sqrt{x+1}+1}=0\)
\(\Leftrightarrow \sqrt{x}\left(1+\frac{\sqrt{x}}{\sqrt{x+1}+1}\right)=0\)
Thấy rằng \(1+\frac{\sqrt{x}}{\sqrt{x+1}+1}>0, \forall x\geq 0\Rightarrow 1+\frac{\sqrt{x}}{\sqrt{x+1}+1}\neq 0\)
Do đó \(\sqrt{x}=0\Rightarrow x=0\) (thỏa mãn)
b) ĐK: \(x\geq 1\)
Ta thấy với mọi \(x\geq 1\) thì:\(\left\{\begin{matrix} \sqrt{x+4}\geq \sqrt{1+4}>2 \\ \sqrt{x-1}\geq 0\end{matrix}\right.\)
\(\Rightarrow \sqrt{x+4}+\sqrt{x-1}>2\)
Do đó pt \(\sqrt{x+4}+\sqrt{x-1}=2\) vô nghiệm