K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2018

a)\(\sqrt{3x}=4\)

\(\Leftrightarrow3x=16\)

\(\Leftrightarrow x=\dfrac{16}{3}\)

24 tháng 9 2018

c)\(\sqrt{\left(1-2x\right)^2}=2\)

\(\Leftrightarrow1-2x=2\)

\(\Leftrightarrow-2x=1\)

\(\Leftrightarrow x=\dfrac{-1}{2}\)

9 tháng 10 2018

a. \(\sqrt{3x}\)-\(\dfrac{1}{2}\sqrt{3x}\)+\(\dfrac{3}{4}\sqrt{3x}\)+5 = 5\(\sqrt{3x}\)(ĐKXĐ: x ≥ 0)

\(\sqrt{3x}\)(1 - \(\dfrac{1}{2}\)+\(\dfrac{3}{4}\)- 5) = -5

⇔ -\(\dfrac{15}{4}\) \(\sqrt{3x}\) = -5 ⇔ \(\sqrt{3x}\) = \(\dfrac{4}{3}\) ⇔ 3x = \(\dfrac{16}{9}\) ⇔ x = \(\dfrac{16}{27}\) (TMĐKXĐ)

Vậy x = \(\dfrac{16}{27}\)

b. \(\sqrt{\left(1-2x\right)^2}\) = 2 ⇔ \(|1-2x|\) = 2 (1)

- Xét x ≥ \(\dfrac{1}{2}\) thì phương trình (1) trở thành: 2x - 1 = 2

⇔ 2x = 3 ⇔ x= \(\dfrac{3}{2}\)(∈ khoảng đang xét)

- Xét x < \(\dfrac{1}{2}\) thì phương trình (1) trở thành: 1 - 2x =2

⇔ 2x = -1 ⇔ x = \(\dfrac{-1}{2}\) (∈ khoảng đang xét)

Vậy x = \(\dfrac{3}{2}\) hoặc x = \(\dfrac{-1}{2}\)

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

a: =>\(\sqrt{3x-5}+2=x+1\)

\(\Leftrightarrow\sqrt{3x-5}=x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=1\\x^2-2x+1-3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

b: \(\Leftrightarrow x-15\sqrt{x}+56=x+11\)

=>-15 căn x=-45

=>x=9

c: =>căn 3x+1=3x-1

\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{3}\\9x^2-6x+1-3x-1=0\end{matrix}\right.\Leftrightarrow x=1\)

d: =>(3x+7)/(x+3)=16

=>16x+48=3x+7

=>13x=-41

=>x=-41/13

Bài 1: 

b: \(\Leftrightarrow2+\sqrt{3x-5}=x+1\)

\(\Leftrightarrow\sqrt{3x-5}=x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=3x-5\\x>=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+6=0\\x>=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)

c: \(\Leftrightarrow5x+7=16\left(x+3\right)\)

=>16x+48=5x+7

=>11x=-41

hay x=-41/11

13 tháng 3 2021

a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)

\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)

13 tháng 3 2021

a') (tiếp)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)

Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)

Với mọi \(x\ge4\), ta có:

\(\sqrt{3x+1}>0\)\(\sqrt{x-4}\ge0\)

\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)

\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)

Do đó phương trình (1) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

a: \(A=\left(\dfrac{6x+4}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}-\dfrac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\dfrac{1+\left(\sqrt{3x}\right)^3}{1+\sqrt{3x}}-\sqrt{3x}\right)\)

\(=\dfrac{6x+4-3x+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\cdot\left(1-\sqrt{3x}\right)^2\)

\(=\dfrac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)

b: Để A là số nguyên thì \(3x-2\sqrt{3x}+1⋮\sqrt{3x}-2\)

=>\(\sqrt{3x}-2\in\left\{1;-1;3;-3\right\}\)

=>\(3x\in\left\{9;1;25\right\}\)

hay x=3