K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tìm x

a) Ta có: \(16x^2-\left(4x-5\right)^2=15\)

\(\Leftrightarrow16x^2-\left(16x^2-40x+25\right)-15=0\)

\(\Leftrightarrow16x^2-16x^2+40x-25-15=0\)

\(\Leftrightarrow40x-40=0\)

\(\Leftrightarrow40x=40\)

hay x=1

Vậy: x=1

b) Ta có: \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)

\(\Leftrightarrow4x^2+12x+9-4\left(x^2-1\right)-49=0\)

\(\Leftrightarrow4x^2+12x+9-4x^2+4-49=0\)

\(\Leftrightarrow12x-36=0\)

\(\Leftrightarrow12x=36\)

hay x=3

Vậy: x=3

d) Ta có: \(2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)

\(\Leftrightarrow2\left(x^2+2x+1\right)-\left(x^2-9\right)-\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow2x^2+4x+2-x^2+9-x^2+8x-16=0\)

\(\Leftrightarrow12x-5=0\)

\(\Leftrightarrow12x=5\)

hay \(x=\frac{5}{12}\)

Vậy: \(x=\frac{5}{12}\)

e) Ta có: \(\left(x-5\right)^2-x\left(x-4\right)=9\)

\(\Leftrightarrow x^2-10x+25-x^2+4x-9=0\)

\(\Leftrightarrow-6x+16=0\)

\(\Leftrightarrow6x=16\)

hay \(x=\frac{8}{3}\)

Vậy: \(x=\frac{8}{3}\)

f) Ta có: \(\left(x-5\right)^2-\left(x-4\right)\left(1-x\right)=0\)

\(\Leftrightarrow x^2-10x+25-\left(x-x^2-4+4x\right)=0\)

\(\Leftrightarrow x^2-10x+25-x+x^2+4-4x=0\)

\(\Leftrightarrow2x^2-15x+29=0\)

\(\Leftrightarrow2\left(x^2-\frac{15}{2}x+\frac{29}{2}\right)=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{15}{4}+\frac{225}{16}+\frac{7}{16}=0\)

\(\Leftrightarrow\left(x-\frac{15}{4}\right)^2+\frac{7}{16}=0\)(vô lý)

Vậy: x∈∅

14 tháng 8 2020

a) 16x^2 - (4x - 5)^2 = 15

<=> 16x^2 - 16x^2 + 40x - 25 = 15

<=> 40x = 40

<=> x = 1

b) (2x + 3)^2 - 4(x - 1)(x + 1) = 49

<=> 4x^2 + 12x + 9 - 4x^2 - 4x + 4x + 4 = 49

<=> 12x + 13 = 49

<=> 12x = 36

<=> x = 3

c) (2x + 1)(1 - 2x) + (1 - 2x)^2 = 18

<=> 1 - 4x^2 + 1 - 4x + 4x^2 = 18

<=> 2 - 4x = 18

<=> -4x = 16

<=> x = -4

d)2(x + 1)^2 - (x - 3)(x + 3) - (x - 4)^2 = 0

<=> 2x^2 + 4x + 2 - x^2 + 3^2 - x^2 + 8x - 16 = 0

<=> 12x - 5 = 0

<=> 12x = 5

<=> x = 5/12

e) (x - 5)^2 - x(x - 4) = 9

<=> x^2 - 10x + 25 - x^2 + 4x = 9

<=> -6x + 25 = 9

<=> -6x = 9 - 25

<=> -6x = -16

<=> x = -16/-6 = 8/3

f) (x - 5)^2 + (x - 4)(1 - x) = 0

<=> x^2 - 10x + 25 + x - x^2 - x - 4 + 4x = 0

<=> -5x + 21 = 0

<=> -5x = -21

<=> x = 21/5

2 tháng 9 2020

Bài 3: Tìm x, biết:

a) \(16x^2-\left(4x-5\right)^2=15\)

\(\Leftrightarrow16x^2-16x^2+40x-25-15=0\)

\(\Leftrightarrow40x-40=0\)

\(\Leftrightarrow4x=40\)

\(\Leftrightarrow x=10\)

Vậy x = 10

b) \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)

\(\Leftrightarrow\left(2x+3\right)^2-4\left(x^2-1\right)=49\)

\(\Leftrightarrow4x^2+12x+9-4x^2+4-49=0\)

\(\Leftrightarrow12x-36=0\)

\(\Leftrightarrow12x=36\)

\(\Leftrightarrow x=3\)

Vậy x = 3

c) \(\left(2x+1\right)\left(1-2x\right)+\left(1-2x\right)^2=18\)

\(\Leftrightarrow\left(1-2x\right)\left(2x+1+1-2x\right)=18\)

\(\Leftrightarrow2\left(1-2x\right)=18\)

\(\Leftrightarrow2-4x=18\)

\(\Leftrightarrow4x=-16\)

\(\Leftrightarrow x=-4\)

Vậy x =-4

d) \(2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)

\(\Leftrightarrow2x^2+4x+2-x^2+9-x^2+8x-16=0\)

\(\Leftrightarrow12x-5=0\)

\(\Leftrightarrow12x=5\)

\(\Leftrightarrow x=\frac{5}{12}\)

Vậy \(x=\frac{5}{12}\)

e) \(\left(x-5\right)^2-x\left(x-4\right)=9\)

\(\Leftrightarrow x^2-10x+25-x^2+4x=9\)

\(\Leftrightarrow25-6x=9\)

\(\Leftrightarrow6x=16\)

\(\Leftrightarrow x=\frac{8}{3}\)

Vậy \(x=\frac{8}{3}\)

f) \(\left(x-5\right)^2+\left(x-4\right)\left(1-x\right)=0\)

\(\Leftrightarrow x^2-10x+25+x-x^2-4+4x=0\)

\(\Leftrightarrow21-5x=0\)

\(\Leftrightarrow5x=21\)

\(\Leftrightarrow x=\frac{21}{5}\)

Vậy \(x=\frac{21}{5}\)

2 tháng 9 2020

bài của bạn làm sai rồi :)

1 tháng 4 2020

e, 3x(2-x) =15(x-2)

\(\Leftrightarrow3x\left(2-x\right)-15\left(x-2\right)=0\)

\(\Leftrightarrow-3x\left(x-2\right)-15\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-3x-15\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\-3x-15=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

Vậy..

f, (x+5)(x+4)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)

Vậy..

g, x(x+4)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

,h, (2x -4)(x-2)=0

\(\Leftrightarrow2\left(x-2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2-1\right)=0\)

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

i, (x+1/5)(2x-3)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{5}=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{5}\\x=\frac{3}{2}\end{matrix}\right.\)

k, x²-4x=0

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

m, 4x²-1=0

\(\Leftrightarrow\left(2x\right)^2-1^2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{2}\end{matrix}\right.\)

n, x²-6x+9=0

\(\Leftrightarrow x^2-2.x.3+3^2=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\)

<=> x=3

l, (3x-5)²-(x+4)²=0

\(\Leftrightarrow\left(3x-5-x-4\right)\left(3x-5+x+4\right)=0\)

\(\Leftrightarrow\left(2x-9\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-9=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=9\\4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{9}{2}\\x=\frac{1}{4}\end{matrix}\right.\)

Vậy ..

o, 7x(x+2)-5(x+2)=0

\(\Leftrightarrow\left(x+2\right)\left(7x-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\7x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\7x=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=\frac{5}{7}\end{matrix}\right.\)

Vậy....

p, 3x(2x-5)-4x+10=0

\(\Leftrightarrow3x\left(2x-5\right)-\left(4x-10\right)=0\)

\(\Leftrightarrow3x\left(2x-5\right)-2\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy...

q, (2-2x)-x²+1=0

\(\Leftrightarrow2\left(1-x\right)-\left(x^2-1^2\right)=0\)

\(\Leftrightarrow2\left(1-x\right)-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow2\left(1-x\right)+\left(1-x\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(2+x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy ....

r, x(1-3x)=5(1-3x)

\(\Leftrightarrow x\left(1-3x\right)-5\left(1-3x\right)=0\)

\(\Leftrightarrow\left(1-3x\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-3x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x=-1\\x=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\x=5\end{matrix}\right.\)

s, 2x-3/4+x+1/6=3

\(\Leftrightarrow x-\frac{7}{12}=3\Leftrightarrow x=3+\frac{7}{12}=\frac{43}{12}\)

1 tháng 4 2020

r, x(1-3x)=5(1-3x)

➜x(1-3x)-5(1-3x)=0

➜(x-5)(1-3x)=0

\(\left[{}\begin{matrix}x-5=0\\1-3x=0\end{matrix}\right.\text{➜}\left[{}\begin{matrix}x=5\\x=\frac{1}{3}\end{matrix}\right.\)

Mk lười lắm mai nha!!!~~~~~~~~~~~~

Tìm x

a) Ta có: \(3\left(1-4x\right)\left(x-1\right)+4\left(3x+2\right)\left(x+3\right)=38\)

\(\Leftrightarrow3\left(x-1-4x^2+4x\right)+4\left(3x^2+9x+2x+6\right)=38\)

\(\Leftrightarrow3\left(-4x^2+5x-1\right)+4\left(3x^2+11x+6\right)-38=0\)

\(\Leftrightarrow-12x^2+15x-3+12x^2+44x+24-38=0\)

\(\Leftrightarrow59x-17=0\)

\(\Leftrightarrow59x=17\)

hay \(x=\frac{17}{59}\)

Vậy: \(x=\frac{17}{59}\)

b) Ta có: \(5\left(2x+3\right)\left(x+2\right)-2\left(5x-4\right)\left(x-1\right)=75\)

\(\Leftrightarrow5\left(2x^2+4x+3x+6\right)-2\left(5x^2-5x-4x+4\right)-75=0\)

\(\Leftrightarrow5\left(2x^2+7x+6\right)-2\left(5x^2-9x+4\right)-75=0\)

\(\Leftrightarrow10x^2+35x+30-10x^2+18x-8-75=0\)

\(\Leftrightarrow53x-53=0\)

\(\Leftrightarrow53x=53\)

hay x=1

Vậy: x=1

c) Ta có: \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)

\(\Leftrightarrow2x^2+3x^2-3=5x^2+5x\)

\(\Leftrightarrow5x^2-3-5x^2-5x=0\)

\(\Leftrightarrow-3-5x=0\)

\(\Leftrightarrow-5x=-3\)

hay \(x=\frac{3}{5}\)

Vậy: \(x=\frac{3}{5}\)

d) Ta có: \(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow8x+16-5x^2-10x+4\left(x^2+x-2x-2\right)+2\left(x^2-4\right)=0\)

\(\Leftrightarrow-5x^2-2x+16+4x^2-4x-8+2x^2-8=0\)

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy: \(x\in\left\{0;6\right\}\)

25 tháng 8 2016

a) ( 2x + 3 )^2 - 4( x - 1 )( x + 1 ) = 49

=>4x2+12x+9-4x2+4=49

 =>12x+13=49

=>12x=36

=>x=3

b) 16x^2 - ( 4x - 5 )^2 = 15

=>16x2-16x2+40x-25=15

=>40x-25=15

=>40x=40

=>x=1

c) ( 2x + 1 )^2 - ( x - 1)^2 = 0

=>4x2+4x+1-x2+2x-1=0

=>3x2+6x=0

=>3x(x+2)=0

=>3x=0 hoặc x+2=0

=>x=0 hoặc x=-2

 

 

26 tháng 8 2016

a) \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\\ =>4x^2+12x+9-4x^2+4=49\\=>12x+13=49\\ =>12x=36\\ =>x=3\)

b) \(16x^2-\left(4x-5\right)^2=15\\ =>16x^2-16x^2+40x-25=15\\ =>40x-25=15\\ =>40x=40\\ =>x=1\)

c) \(\left(2x+1\right)^2-\left(x-1\right)^2=0\\ =>4x^2+4x+1-x^2+2x-1=0\\ =>3x^2+6x=0\\ =>3x\left(x+2\right)=0\\ =>\left[\frac{3x=0}{x+2=0}\right]=>\left[\frac{x=0}{x=-2}\right]\)

6 tháng 10 2020

a) \(4x^3-9x=0\)

\(\Leftrightarrow x\left(4x^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2=9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{3}{2}\end{cases}}\)

b) \(3x\left(x-2\right)-5x+10=0\)

\(\Leftrightarrow\left(3x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)

c) \(4x\left(x+3\right)-x^2+9=0\)

\(\Leftrightarrow4x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(3x+3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)

d) \(\left(2x+5\right)\left(x-4\right)=\left(x-4\right)\left(5-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow3x\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

6 tháng 10 2020

e) \(16x^2-25=\left(4x-5\right)\left(2x+1\right)\)

\(\Leftrightarrow\left(4x-5\right)\left(4x+5\right)-\left(4x-5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-2\end{cases}}\)

f) \(\left(x+\frac{1}{5}\right)^2=\frac{64}{9}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{8}{3}\\x+\frac{1}{5}=-\frac{8}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{37}{15}\\x=-\frac{43}{15}\end{cases}}\)

g) \(9\left(x+2\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}3x+6=x+3\\3x+6=-x-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{9}{4}\end{cases}}\)