Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.172x^2-7^9=2^{-3}.98^3=117649\)
\(172x^2=117649+7^9=40471256\)
\(x^2=40471256:172=235298\)
\(x=\sqrt{235298}=485.07......\)
a.\(3x^2-51=-24\)
\(\Rightarrow3x^2=27\)
\(\Rightarrow x^2=9\)
\(\Rightarrow x=3\)
b.\(5x.\left(5^3\right)^2=625\)
\(\Rightarrow5x=5^5:5^{\left(3x2\right)}\)
\(\Rightarrow5x=5^5:5^6\)
\(\Rightarrow5x=5^{-1}=0,2\)
\(\Rightarrow x=0,2:5\)
\(\Rightarrow x=0,04\)
\(\left(\frac{-3}{4}\right)^{3x-1}=\frac{256}{81}\)
\(\Rightarrow\left(\frac{-3}{4}\right)^{3x}:\left(\frac{-3}{4}\right)=\frac{256}{81}\)
\(\Rightarrow\left(\frac{-3}{4}\right)^{3x}=\frac{256}{81}.\left(\frac{-3}{4}\right)\)
\(\Rightarrow\left(\frac{-3}{4}\right)^{3x}=\frac{64}{27}\)
\(\Rightarrow\left(-\frac{3}{4}\right)^{3x}=\left(-\frac{4}{3}\right)^3\)
\(\Rightarrow1=\left(-\frac{4}{3}\right)^3.\left(-\frac{4}{3}\right)^{3x}\)
\(\Rightarrow1=\left(-\frac{4}{3}\right)^{-x}\)
\(\Rightarrow1=\left(-\frac{3x}{4}\right)\)
\(\Rightarrow1=-3x:4\)
\(\Rightarrow-3x=4\)
\(\Rightarrow x=-\frac{4}{3}\)
Ta có:
\(\frac{256}{81}=\frac{4^4}{"-3"^4}=\frac{1}{\frac{"-3"^4}{4}}=\frac{1}{"\frac{-3}{4}"^4}="\frac{-3}{4}"^4="\frac{-3}{4}"^{3x-1}\Rightarrow3x-1=-4\Rightarrow3x=-4+1\)
\(=-3\)
\(\Rightarrow x=-3:1=-1\)
a) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\frac{1^4}{3^4}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow n=4\)
Vậy n = 4
b) \(\frac{-512}{343}=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow\frac{-8^3}{7^3}=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow\left(\frac{-8}{7}\right)^3=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow n=3\)
Vậy n = 3
Bài 1:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{1440}{144}=10\)
\(\Rightarrow x=5\)
Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)
=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)
\(\left(\frac{3}{4}\right)^{3x-1}=\left(\frac{16}{9}\right)^2=>3x-1=2\)2