K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

a/ Đặt x2 = a thì pt thành

a3 + a- a = o

<=> a(a+ a - 1) = 0

b/ x4 - 3x3 + 4x2 - 3x + 1 = 0

<=> (x- 2x3 + x2) + (- x3 + 2x2 - x) + (x2 - 2x + 1) = 0

<=> (x - 1)2( x2 - x + 1) = 0

<=> x - 1 = 0

<=> x = 1

18 tháng 7 2015

dùng phương pháp đặt ẩn phụ

NV
2 tháng 3 2020

a. \(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)\left(x+1\right)\left(2x-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\\x+1=0\\2x-9=0\end{matrix}\right.\) \(\Rightarrow x=\)

b. \(\Leftrightarrow x^3+x+3x^2+3=0\)

\(\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+1=0\left(vn\right)\end{matrix}\right.\)

c. \(\Leftrightarrow2x\left(3x-1\right)^2-\left(9x^2-1\right)=0\)

\(\Leftrightarrow\left(6x^2-2x\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(6x^2-5x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(6x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-1=0\\6x+1=0\end{matrix}\right.\)

NV
2 tháng 3 2020

d.

\(\Leftrightarrow x^3-3x^2+2x-3x^2+9x-6=0\)

\(\Leftrightarrow x\left(x^2-3x+2\right)-3\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\\x-2=0\end{matrix}\right.\)

e.

\(\Leftrightarrow x^3+2x^2+x+3x^2+6x+3=0\)

\(\Leftrightarrow x\left(x^2+2x+1\right)+3\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+1=0\end{matrix}\right.\)

30 tháng 7 2018

\(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-5=9\\2x-3=9\\x-1=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=6\\x=10\end{matrix}\right.\)

Vậy \(x=\left\{3,5;6;10\right\}\)

d: Sửa đề: \(\left(4x-5\right)^2\cdot\left(2x-3\right)\left(x-1\right)=9\)

image

a: \(\Leftrightarrow\left(2x^2+x\right)^2-3\left(2x^2+x\right)-\left(2x^2+x\right)+3=0\)

\(\Leftrightarrow\left(2x^2+x\right)\left(2x^2+x-3\right)-\left(2x^2+x-3\right)=0\)

\(\Leftrightarrow\left(2x^2+x-3\right)\left(2x^2+x-1\right)=0\)

\(\Leftrightarrow\left(2x^2+3x-2x-3\right)\left(2x^2+2x-x-1\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)\left(x+1\right)\left(2x-1\right)=0\)

hay \(x\in\left\{-\dfrac{3}{2};1;-1;\dfrac{1}{2}\right\}\)

13 tháng 4 2017

Câu c;d giải \(\Delta\)

Các câu còn lại là phương trình trùng phương, mình chỉ làm 1 câu thôi. Các câu sau tương tự

a/ \(x^4-2x^2-8=0\left(1\right)\)

Đặt: \(x^2=t\left(t\ge0\right)\)

\(\left(1\right)\Rightarrow t^2-2t-8=0\)

( a = 1; b = -2; c = -8 )

\(\Delta=b^2-4ac\) 

   \(=\left(-2\right)^2-4.1.\left(-8\right)\)

   \(=36>0\)

\(\sqrt{\Delta}=\sqrt{36}=6\)

Pt có 2 nghiệm phân biệt:

\(t_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-6}{2.1}=-2\left(l\right)\)

\(t_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+6}{2.1}=4\left(n\right)\Rightarrow x^2=4\Leftrightarrow x=2hayx=-2\)

Vậy: S = {-2;2}

NV
18 tháng 10 2020

a/ Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(\Leftrightarrow2\left(x^2+\frac{1}{x^2}\right)-3\left(x-\frac{1}{x}\right)-4=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)

Pt trở thành:

\(2\left(t^2+2\right)-3t-4=0\Leftrightarrow2t^2-3t=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=\frac{3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{x}=0\\x-\frac{1}{x}=\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\2x^2-3x-2=0\end{matrix}\right.\) (bấm máy)

NV
18 tháng 10 2020

b/

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)=3\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)-3=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)-3=0\)

Đặt \(x^2-5x+4=t\)

Pt trở thành:

\(t\left(t+2\right)-3=0\)

\(\Leftrightarrow t^2+2t-3=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+4=1\\x^2-5x+4=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+3=0\\x^2-5x+7=0\end{matrix}\right.\) (bấm máy)

13 tháng 8 2018

a) \(3x^3-x+2=0\)

\(\Leftrightarrow3x^3+3x^2-3x^2-3x+2x+2=0\)

\(\Leftrightarrow3x^2\left(x+1\right)-3x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2-3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x^2-3x^2+2=0\left(1\right)\end{matrix}\right.\)

Xét phương trình (1):

\(\Delta=9-24=-15< 0\)

\(\Rightarrow\) Phương trình (1) vô nghiệm.

Vậy phương trình đã cho có nghiệm \(x=-1\)

b) \(x^3-6x^2+10x-4=0\)

\(\Leftrightarrow x^3-2x^2-4x^2+8x^{ }+2x^{ }-4=0\)

\(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+2\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(x^2-4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^2-4x+2=0\left(2\right)\end{matrix}\right.\)
Xét phương trình (2):

\(\Delta'=4-2=2>0\)

\(\Rightarrow\) Phương trình (2) có 2 nghiệm phân biệt:

\(x_1=2+\sqrt{2}\)

\(x_2=2-\sqrt{2}\)

Vậy phương trình đã cho có ba nghiệm: \(x_1=2+\sqrt{2};x_2=2-\sqrt{2};x_3=2\)

c)\(3x^3+3x^2+3x+1=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x=-1\)

Vậy phương trình đã cho có nghiệm \(x=-1\)