K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2015

Đề bài sai nhé, tìm GTNN chứ không phải GTLN. Bài này không có GTLN.

Biệt thức \(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)=5m^2-6m+9=4m^2+\left(m-3\right)^2>0\) với mọi \(m\). Do đó phương trình đã cho luôn có 2 nghiệm phân biệt.

Theo định lý Vi-et ta có \(x_1+x_2=m-1,x_1x_2=-m^2+m-2\to x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(\to x_1^2+x_2^2=\left(m-1\right)^2-2\left(-m^2+m-2\right)=3m^2-4m+5.\)

Giá trị lớn nhất không tồn tại vì khi m lớn tùy ý thì \(x_1^2+x_2^2\) lớn tùy ý.

Ta có \(3m^2-4m+5=\frac{1}{3}\left(3m-2\right)^2+5-\frac{4}{3}\ge5-\frac{4}{3}=\frac{11}{3}.\) Suy ra \(x_1^2+x_2^2\ge\frac{11}{3}.\) Dấu bằng xảy ra khi và chỉ khi \(m=\frac{2}{3}\). Vậy \(m=\frac{2}{3}\) thì \(x_1^2+x_2^2\)  đạt giá trị nhỏ nhất.

21 tháng 4 2016

ỷhđfgdg

21 tháng 4 2016

x=7

y=3 bạn nhé

k cho mình đi

10 tháng 6 2015

\(=\frac{3\left(x^2+2x+3\right)+1}{\left(x^2+2x+3\right)}=3+\frac{1}{\left(x+1\right)^2+2}\). ta có: \(\left(x+1\right)^2\ge0\Leftrightarrow\left(x+1\right)^2+2\ge2\Leftrightarrow\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\Leftrightarrow3+\frac{1}{\left(x+1\right)^2+2}\le\frac{7}{2}\)

=> max M=7/2 <=> x=-1

18 tháng 3 2016

thui khỏi mk làm đk rùi

31 tháng 3 2016

ko phải 100 đâu

x\(\approx\)110,97154383

16 tháng 4 2016

Áp dụng BĐT Cô-si:

X4+1\(\ge\) 2X2   Dấu = xảy ra <=> X=1

Y4 + 1\(\ge\)  2Y2  Dấu = xảy ra <=> Y=1

=> P\(\ge\)  2X2 . 2Y2+2013

        \(\ge\)   4X2Y2 +2013 

Vì 4X2Y2\(\ge\)    0

=> P    \(\ge\)    2013

Vậy Min P= 2013 tại X=Y=1

6 tháng 4 2016

2(x^2+y^2+xy-5x-4y+2002)=(x+y-2)^2+(x-3)^2+(y-2)^2+3987>=(x+y-2+3-x+2-y)^2/3+3987=3+3987=3990

=>gtnt=1995

11 tháng 3 2016

dù là cách nào đi nữa thì kết quả vẫn như nhau

11 tháng 3 2016

min=1995 khi y=1 x=2

6 tháng 5 2016

Với mỗi gt của x ( x là số nguyên) thì luôn nhận được một giá trị của y

6 tháng 5 2016

Not  với x=1 thì sao