Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai nhé, tìm GTNN chứ không phải GTLN. Bài này không có GTLN.
Biệt thức \(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)=5m^2-6m+9=4m^2+\left(m-3\right)^2>0\) với mọi \(m\). Do đó phương trình đã cho luôn có 2 nghiệm phân biệt.
Theo định lý Vi-et ta có \(x_1+x_2=m-1,x_1x_2=-m^2+m-2\to x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(\to x_1^2+x_2^2=\left(m-1\right)^2-2\left(-m^2+m-2\right)=3m^2-4m+5.\)
Giá trị lớn nhất không tồn tại vì khi m lớn tùy ý thì \(x_1^2+x_2^2\) lớn tùy ý.
Ta có \(3m^2-4m+5=\frac{1}{3}\left(3m-2\right)^2+5-\frac{4}{3}\ge5-\frac{4}{3}=\frac{11}{3}.\) Suy ra \(x_1^2+x_2^2\ge\frac{11}{3}.\) Dấu bằng xảy ra khi và chỉ khi \(m=\frac{2}{3}\). Vậy \(m=\frac{2}{3}\) thì \(x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
\(=\frac{3\left(x^2+2x+3\right)+1}{\left(x^2+2x+3\right)}=3+\frac{1}{\left(x+1\right)^2+2}\). ta có: \(\left(x+1\right)^2\ge0\Leftrightarrow\left(x+1\right)^2+2\ge2\Leftrightarrow\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\Leftrightarrow3+\frac{1}{\left(x+1\right)^2+2}\le\frac{7}{2}\)
=> max M=7/2 <=> x=-1
Áp dụng BĐT Cô-si:
X4+1\(\ge\) 2X2 Dấu = xảy ra <=> X=1
Y4 + 1\(\ge\) 2Y2 Dấu = xảy ra <=> Y=1
=> P\(\ge\) 2X2 . 2Y2+2013
\(\ge\) 4X2Y2 +2013
Vì 4X2Y2\(\ge\) 0
=> P \(\ge\) 2013
Vậy Min P= 2013 tại X=Y=1
Với mỗi gt của x ( x là số nguyên) thì luôn nhận được một giá trị của y
x^x=x
=>x(x^(x-1)-1)=0
=>x=0(loại) hoặc x^x-1-1=0
=>x^x-1=1
=>x=1