Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(12\left(x-2\right)\left(x+2\right)-3\left(2x+3\right)^2\) \(=52\)
\(12\left(x^2-4\right)-3\left(4x^2+12x+9\right)\) \(=52\)
\(12x^2-48-12x^2-36x-27\) \(=52\)
\(-36x-75=52\)
\(-36x=127\)
\(x=\frac{-127}{36}\)
\(\left(2x+1\right)^2-4\left(x-1\right)\left(x+1\right)\) \(+2x=5\)
\(4x^2+4x+1-4\left(x^2-1\right)\) \(+2x=5\)
\(4x^2+4x-1-4x^2+4+2x=5\)
\(6x+3=5\)
\(6x=2\)
\(x=3\)
\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)\) \(+6\left(x-1\right)^2=15\)
\(x^3-6x^2+12x-8-\left(x-3\right)\left(x+3\right)^2\) \(+6\left(x^2-2x+1\right)=15\)
\(x^3-6x^2+12x-8-\left(x^2-9\right)\left(x+3\right)\) \(+6x^2-12x+6=15\)
\(x^3-2\) \(-\left(x^3+3x^2-9x-27\right)\)\(=15\)
\(x^3-2-x^3-3x^2+9x+27=15\)
\(-3x^2+9x+25=15\)
\(-3x^2+9x+10=0\)
\(-3\left(x^2-3x-\frac{10}{3}\right)\) \(=0\)
\(x=\frac{9+\sqrt{201}}{6}\)
các câu còn lại tương tự
a) \(\left(x+2\right)^2-9=0\)
\(=>\left(x+2\right)^2-3^2=0\\ =>\left(x+2-3\right).\left(x+2+3\right)=0\)
\(=>\left(x-1\right).\left(x+5\right)=0\)
\(=>\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}=>\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy x= 1 hoặc x= -5
b) \(x^2-2x+1=25\)
\(=>x^2-2.x.x+1^2=25\)
\(=>\left(x-1\right)^2-25=0\\ =>\left(x-1\right)^2-5^2=0\)
\(=>\left(x-1-5\right).\left(x-1+5\right)=0\)
\(=>\left(x-6\right).\left(x+4\right)=0=>\orbr{\begin{cases}x-6=0\\x+4=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
Vậy x= 6 hoặc x= -4
c) \(4x\left(x-1\right)-\left(2x+5\right)\left(2x-5\right)=1\)
\(=>4x\left(x-1\right)-\left[\left(2x\right)^2-5^2\right]=1\)
\(=>4x\left(x-1\right)-4x^2+25-1=0\)
\(=>4x\left(x-1\right)-4x^2+24=0\)
\(=>4x\left(x-1\right)-\left(4x^2-24\right)=0\\ =>4x\left(x-1\right)-4\left(x^2-6\right)=0\)
..................... tắc ròi -.-"
d) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+3\right)=15\)
\(=>x^3+27-x^3-3x=15\)
\(=>27-3x-15=0=>12-3x=0=>3\left(4-x\right)=0\)
Vì \(3>0=>4-x=0=>x=4\)
Vậy x= 4
e) \(3\left(x+2\right)^2+\left(2x+1\right)^2-7\left(x+3\right)\left(x-3\right)=28\)
\(=>3\left(x^2+2.x.2+2^2\right)+4x^2+4x+1-7\left(x^2-9\right)=28\)
\(=>3\left(x^2+4x+4\right)+4x^2+4x+1-7x^2+63=28\)
\(=>3x^2+12x+12+4x^2+4x+1-7x^2+63=28\)
\(=>16x+75=28=>16x=-47=>x=\frac{-47}{16}\)
Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt :>'-'
a/ \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
<=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)
<=> \(\left(2x+3\right)^2-4x^2+1=22\)
<=> \(\left(2x+3-2x\right)\left(2x+3+2x\right)=21\)
<=> \(3\left(4x+3\right)=21\)
<=> \(4x+3=7\)
<=> \(4x=4\)
<=> \(x=1\)
......................?
mik ko biết
mong bn thông cảm
nha ................
\(\left(-2x+x^2\right).\left(-2x+x^2\right).\left(-2x+x^2\right).\left(-2x+x^2\right).\left(-2x+x^2\right)=1\)
\(\Leftrightarrow\left(-2x+x^2\right)^5=1\)
\(\Leftrightarrow-2x+x^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x=1-\sqrt{2}\\x=\sqrt{2}+1\end{cases}}\)
Vậy \(x=1-\sqrt{2}\) hoặc \(x=\sqrt{2}+1\)
\(12\left(x-2\right)\left(x+2\right)-3\left(2x+3\right)^2\)=52\(\Leftrightarrow12\left(x^2-2^2\right)-3\left(4x^2+12x+9\right)=52\)
\(\Leftrightarrow12x^2-48-12x^2-36x-27-52=0\)
\(\Leftrightarrow-36x-127=0\)
\(\Leftrightarrow x=-3.52\)
Bạn học hằng đẳng thức chưa bạn , bạn chỉ cần nắp chúng vào là làm đc thôi
1) \(x^2-6x+9=\left(5-3x\right)^2\)
\(\left(x-3\right)^2=\left(5-3x\right)^2\)
\(\Rightarrow x-3=5-3x\)
\(\Rightarrow x+3x=5+3\)
\(\Rightarrow4x=8\)
\(\Rightarrow x=2\)
\(3x\left(2x-3\right)=5\left(3-2x\right)\)
\(3x\left(2x-3\right)+5\left(2x-3\right)=0\)
\(\left(3x+5\right)\left(2x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+5=0\\2x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{3}{2}\end{cases}}\)
3) \(x^2-2x-15=0\)
\(x^2-2x+1-16=0\)
\(\left(x-1\right)^2-4^2=0\)
\(\left(x-1-4\right)\left(x-1+4\right)=0\)
\(\left(x-5\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
a) \(x^3-x=0\)
\(\Leftrightarrow x\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-1=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-1\end{cases}}\)
Vậy \(x\in\left\{0;1;-1\right\}\)
b) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow8-2x=15\)
\(\Leftrightarrow2x=-7\)
\(\Leftrightarrow x=\frac{-7}{2}\)
Vậy \(x=\frac{-7}{2}\)
Đặt \(x^2+2x=a\), pt trở thành:
\(a^2+2a=15\Leftrightarrow a^2+2a-15=0\\ \Leftrightarrow\left[{}\begin{matrix}a=3\\a=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2-2x-3=0\\x^2-2x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\\x\in\varnothing\left[x^2-2x+5=\left(x-1\right)^2+4>0\right]\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)