Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x-7=\pm1\end{cases}}}\)
vậy x=7, x=8 hay x=6
a) Ta có : \(5^x+5^{x+2}=650=>5^x\left(1+5^2\right)=650=>5^x.26=650=>5^x=25=5^2=>x=2\)
Vậy x=2
b) Ta có : \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0=>\left(x-7\right)^{x+1}[1-(x-7)^{10}]=0\)
\(=>\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}=>\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
\(=>x=7\) hoặc \(x-7=1\)hoặc \(x-7=-1\)
\(=>x=7\) hoặc \(x=8\) hoặc \(x=6\)
1) \(5^x+5^{x+2}=650\)
\(\Rightarrow5^x.1+5^x.5^2=650\)
\(\Rightarrow5^x.\left(1+5^2\right)=650\)
\(\Rightarrow5^x.26=650\)
\(\Rightarrow5^x=650:26\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
Vậy \(x=2.\)
Mình chỉ làm câu 1) thôi nhé.
Chúc bạn học tốt!
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
\(\left(x^2-1\right)\left(x^2-3\right)\left(x^2-5\right)\left(x^2-7\right)\le0\)
\(\Rightarrow\) Có 1 hoặc 3 thừa số nhỏ hơn hoặc bằng 0 và các số còn lại lớn hơn hoặc bằng 0
Ta có : \(x^2-1>x^2-3>x^2-5>x^2-7\)
TH1 : Có 1 thừa số nhỏ hơn hoặc bằng 0 :
\(\hept{\begin{cases}x^2-7\le0\\x^2-1\ge0;x^2-3\ge0;x^2-5\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2\le7\left(1\right)\\x^2\ge5\left(2\right)\end{cases}}}\)
\(\left(1\right)\)\(\Leftrightarrow\)\(-\sqrt{7}\le x\le\sqrt{7}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x\ge\sqrt{5}\\x\le-\sqrt{5}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}\sqrt{5}\le x\le\sqrt{7}\\-\sqrt{7}\le x\le-\sqrt{5}\end{cases}}\)
TH2 : có 3 thừa số nhỏ hơn hoặc bằng 0 :
\(\hept{\begin{cases}x^2-3\le0;x^2-5\le0;x^2-7\le0\\x^2-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2\le3\left(1\right)\\x^2\ge1\left(2\right)\end{cases}}}\)
\(\left(1\right)\)\(\Leftrightarrow\)\(-\sqrt{3}\le x\le\sqrt{3}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x\ge1\\x\le-1\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}1\le x\le\sqrt{3}\\-\sqrt{3}\le x\le-1\end{cases}}\)
Vậy \(1\le x\le\sqrt{3}\)\(;\)\(-\sqrt{3}\le x\le-1\)\(;\)\(\sqrt{5}\le x\le\sqrt{7}\) hoặc \(-\sqrt{7}\le x\le-\sqrt{5}\)
PS : sai sót bỏ qua nhé :v
a) Ta có : \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-3\right)^4\ge0\forall y\\\left(z-5\right)^6\ge0\forall z\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^4+\left(z-5\right)^6\ge0\forall x,y,z\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^4=0\\\left(z-5\right)^6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\\z=5\end{cases}}}\)
b) Ta có : \(\left(2x-y\right)^2+\left(z-1\right)^8+\left(y-5\right)^{10}\ge0\forall x,y,z\) (1)
Ta lại có : \(\left(2x-y\right)^2+\left(z-1\right)^8+\left(y-5\right)^{10}\le0\) (2)
Từ (1) và (2) \(\Rightarrow\left(2x+y\right)^2+\left(z-1\right)^8+\left(y-5\right)^{10}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x+y\right)^2=0\\\left(z-1\right)^8=0\\\left(y-5\right)^{10}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=-y\\y=5\\z=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=5\\z=1\end{cases}}\)