Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-5\right)^2\cdot\left|y^2-81\right|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\y^2-81=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\y=+-9\end{cases}}}\)
b) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
\(5y=2z\Leftrightarrow\frac{y}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{z}{5}=\frac{3x+y-z}{9+2-5}=\frac{-360}{6}=-60\)
Tự tìm x,y,z nhé
c) \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{y}{15}=\frac{z}{12}\)
(làm tương tự câu b)
d) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Leftrightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\left(..........\right)\)
đến đây chắc dễ rồi
e) \(\frac{x}{5}=\frac{y}{4}\Leftrightarrow x=\frac{5y}{4}\)
Thay \(x=\frac{5y}{4}\)vào biểu thức x^2 - y^2 =1
(tìm ra y sau đó thay y vào \(x=\frac{5y}{4}\)để tìm x)
f)
a) (5x+1) ^ 2 = 4^2 : 5^ 2
( 5x+1) ^2 = (4:5) ^2
=> (5x+1) = ( 4 : 5) = 0.8
5x = 0.8 - 1
x = 0.7 : 5
x = 0,14
a)\(\left(5x+1\right)^2=\frac{36}{49}\\ \left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\\ \Rightarrow\left[{}\begin{matrix}5x+1=\frac{6}{7}\\5x+1=\frac{-6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{-1}{35}\\x=\frac{-13}{35}\end{matrix}\right.\)
vậy...
2.
a) \(\left(5x+1\right)^2=\frac{36}{49}\)
⇒ \(5x+1=\pm\frac{6}{7}\)
⇒ \(\left[{}\begin{matrix}5x+1=\frac{6}{7}\\5x+1=-\frac{6}{7}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}5x=\frac{6}{7}-1=-\frac{1}{7}\\5x=\left(-\frac{6}{7}\right)-1=-\frac{13}{7}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\left(-\frac{1}{7}\right):5\\x=\left(-\frac{13}{7}\right):5\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\frac{1}{35}\\x=-\frac{13}{35}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{35};-\frac{13}{35}\right\}.\)
Chúc bạn học tốt!
Bài 2:
x=13 nên x+1=14
\(f\left(x\right)=x^{14}-x^{13}\left(x+1\right)+x^{12}\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+14\)
\(=x^{14}-x^{14}-x^{13}+x^{13}-...+x^3+x^2-x^2-x+14\)
=14-x=1
x=13 nên x+1=14
f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14
=x14−x14−x13+x13−...+x3+x2−x2−x+14=x14−x14−x13+x13−...+x3+x2−x2−x+14
=14-x=1
a) => \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}=\frac{24}{54}=\frac{4}{9}\)
=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\) => \(x=\frac{6}{5}.\left(\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\right)\)
b) \(\frac{1}{3}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\) => \(\left(\frac{1}{2}x-1\right)^4=\frac{3}{48}=\frac{1}{16}\)
=> \(\frac{1}{2}x-1=\frac{1}{2}\) hoặc \(\frac{1}{2}x-1=-\frac{1}{2}\)
=> \(\frac{1}{2}x=\frac{3}{2}\) hoặc \(\frac{1}{2}x=\frac{1}{2}\) => x = 3 hoặc x = 1
c) \(\left(1+5\right).\left(\frac{3}{5}\right)^{x-1}=\frac{54}{25}\) => \(\left(\frac{3}{5}\right)^{x-1}=\frac{9}{25}=\left(\frac{3}{5}\right)^2\)
=> x - 1= 2 => x = 3
d) \(\left(1+\left(\frac{2}{3}\right)^2\right).\left(\frac{2}{3}\right)^x=\frac{101}{243}\) => \(\frac{13}{9}.\left(\frac{2}{3}\right)^x=\frac{101}{243}\)
=> \(\left(\frac{2}{3}\right)^x=\frac{101}{243}:\frac{13}{9}=\frac{101}{351}\) (có lẽ đề sai)
2) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\); \(\frac{1}{81^8}=\frac{1}{\left(3^4\right)^8}=\frac{1}{3^{32}}\)
Vì 333 > 332 => \(\frac{1}{3^{33}}\) < \(\frac{1}{3^{32}}\) => \(\frac{1}{27^{11}}\) < \(\frac{1}{81^8}\)
b) \(\frac{1}{3^{99}}=\frac{1}{\left(3^3\right)^{33}}=\frac{1}{27^{33}}<\frac{1}{11^{21}}\) Vì 2733 > 1133 > 1121
a) \(2x^8:x^6\)
\(=2x^2.\)
\(48^3:12^3\)
\(=\left(48:12\right)^3\)
\(=4^3\)
\(=64.\)
d) \(\left(\frac{2}{3}\right)^2-\left(\frac{3}{4}\right)^2.\left(-1\right)^{2019}\)
\(=\frac{4}{9}-\frac{9}{16}.\left(-1\right)\)
\(=\frac{4}{9}-\left(-\frac{9}{16}\right)\)
\(=\frac{145}{144}.\)
Chúc bạn học tốt!
1) \(125^5:25^7\)
\(=\left(5^3\right)^5:\left(5^2\right)^7\)
\(=5^{15}:5^{14}\)
= 5
2) \(27^8:9^9\)
\(=\left(3^3\right)^8:\left(3^2\right)^9\)
\(=3^{24}:3^{18}\)
\(=3^6\)
3) \(36^5:6^8\)
\(=\left(6^2\right)^5:6^8\)
\(=6^{10}:6^8\)
\(=6^2\)
4) \(49^6:7^{10}\)
\(=\left(7^2\right)^6:7^{10}\)
\(=7^{12}:7^{10}=7^2\)
5) \(7^{20}:49^9\)
\(=7^{20}:\left(7^2\right)^9\)
\(=7^{20}:7^{18}=7^2\)
6) \(\frac{1}{2^{10}}:\frac{1}{8^3}\)
\(=\frac{1}{2^{10}}:\frac{1}{\left(2^3\right)^3}\)
\(=\frac{1}{2^{10}}:\frac{1}{2^9}=\frac{1}{2^{10}}.\frac{2^9}{1}=\frac{1}{2}\)
7) \(\left(-\frac{1}{2}\right)^{21}:\frac{1}{4^{10}}\)
\(=\frac{\left(-1\right)^{21}}{2^{21}}:\frac{1}{\left(2^2\right)^{10}}\)
\(=-\frac{1}{2^{21}}:\frac{1}{2^{20}}=-\frac{1}{2^{21}}.\frac{2^{20}}{1}\)
\(=-\frac{1}{2}\)
8) \(\frac{1}{16^5}:\left(-\frac{1}{2}\right)^{18}\)
\(=\frac{1}{\left(2^4\right)^5}:\frac{\left(-1\right)^{18}}{2^{18}}\)
\(=\frac{1}{2^{20}}:\frac{1}{2^{18}}\)
\(=\frac{1}{2^{20}}.\frac{2^{18}}{1}=\frac{1}{4}\)
9) \(\frac{1}{5^{30}}:\frac{1}{25^{14}}\)
\(=\frac{1}{5^{30}}:\frac{1}{\left(5^2\right)^{14}}\)
\(=\frac{1}{5^{30}}:\frac{1}{5^{28}}=\frac{1}{25}\)