Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x}\left(\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b) \(\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\\sqrt{x}=-3\left(vôlí\right)\end{cases}}\)
c) \(\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\\sqrt{x}+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-1\left(vôlí\right)\\\sqrt{x}=-3\left(vôlí\right)\end{cases}}\)
b.
Khi \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)
Xét với \(m\ne\dfrac{5}{2}\):
\(\Delta'=\left(m-1\right)^2-3\left(2m-5\right)=m^2-8m+16=\left(m-4\right)^2\)
Pt đã cho luôn có 2 nghiệm \(\forall m\ne\dfrac{5}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1x_2=\dfrac{3}{2m-5}\end{matrix}\right.\)
Két hợp Viet với điều kiện đề bài:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1-x_2=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{8m-17}{2\left(2m-5\right)}\\x_2=\dfrac{-4m+13}{2\left(2m-5\right)}\end{matrix}\right.\)
Thế vào \(x_1x_2=\dfrac{3}{2m-5}\)
\(\Rightarrow\dfrac{\left(8m-17\right)\left(-4m+13\right)}{4\left(2m-5\right)^2}=\dfrac{3}{2m-5}\)
\(\Rightarrow32m^2-148m+161=0\)
\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{7}{4}\\m=\dfrac{23}{8}\end{matrix}\right.\)
a, Khi m = 0 thì :
pt <=> x^2+2x-3 = 0
<=> (x-1).(x+3) = 0
<=> x-1=0 hoặc x+3=0
<=> x=1 hoặc x=-3
Tk mk nha
Ta có \(\dfrac{1}{x+1}+\dfrac{1}{y+2}+\dfrac{1}{z+3}\ge\dfrac{9}{x+y+z+6}\), do đó:
\(\dfrac{9}{x+y+z+6}\le1\)
\(\Leftrightarrow x+y+z\ge3\)
Đặt \(x+y+z=t\left(t\ge3\right)\). Khi đó \(P=t+\dfrac{1}{t}\)
\(P=\dfrac{t}{9}+\dfrac{1}{t}+\dfrac{8}{9}t\)
\(\ge2\sqrt{\dfrac{t}{9}.\dfrac{1}{t}}+\dfrac{8}{9}.3\)
\(=\dfrac{2}{3}+\dfrac{24}{9}\)
\(=\dfrac{10}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}t=x+y+z=3\\x+1=y+2=z+3\end{matrix}\right.\)
\(\Leftrightarrow\left(x,y,z\right)=\left(2,1,0\right)\)
Vậy \(min_P=\dfrac{10}{3}\Leftrightarrow\left(x,y,z\right)=\left(2,1,0\right)\)
Để P(x) bằng đa thức 0 thì <=> \(\hept{\begin{cases}3m-5n+1=0\\4m-n-10=0\end{cases}}\)
(rồi giải bình thường thôi)
Để P(x) bằng đa thức 0 thì \(\hept{\begin{cases}3m-5n+1=0\\4m-n-10=0\end{cases}}\)
<=>\(\hept{\begin{cases}3m-5n=-1\\20m-5n=50\end{cases}}\)<=> \(\hept{\begin{cases}-17m=-51\\3m-5n=-1\end{cases}}\)
<=> \(\hept{\begin{cases}m=3\\9-5n=-1\end{cases}}\) <=> \(\hept{\begin{cases}m=3\\-5n=-10\end{cases}}\)
<=> \(\hept{\begin{cases}m=3\\n=2\end{cases}}\)
Vậy m=3, n=2 thì đa thức P(x) bằng đa thức 0
Bạn tìm GTNN theo z thì đề đúng bằng cách:
(x+y)(1/x+1/y)>=4 suy ra 1/z=1/x+1/y>=4/x+y(do x,y>0)hay 4/4z>=4/x+y suy ra x+y>=4z.
Sau đó dùng BĐT Bunhiacopxki suy ra 2(√x+√y)^2>=(x+y)^2=16z^2 suy ra
√x+√y>=√8z=2z√2
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
x . 1=0
x=0
Mà x khác 0 nên không có giá trị x