K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

(x2 - 2x + 3)(x2 - 2x + 5) = 0

+)  x2 - 2x + 3 = 0

      mà x2 - 2x + 3 = (x - 1)2 + 2 > 0

      => vô nghiệm

+) x2 - 2x + 5 = 0

    mà x2 - 2x + 5 = (x - 1)2 + 4 > 0

   => vô nghiệm

Vậy pt vô ngiệm

6 tháng 1 2016

=>\(x^2-2x+3=0\)

\(\left(x-1\right)^2+2=0\)

không có x thoả mãn

=>\(x^2-2x+5=0\)

\(\left(x-1\right)^2+4=0\)

không có x thoả mãn

pt vô nghiệm

4 tháng 9 2015

bn vào câu hỏi tương tự tham khảo cách lm nhé

4 tháng 9 2015

vào câu hỏi tương tự

23 tháng 7 2019

1. a) Ta có: 2x2 - x + 1 = x(2x + 1) - 2x + 1 = x(2x + 1) - (2x + 1) + 2 = (x - 1)(2x + 1) + 2

Do (x - 1)(2x + 1) \(⋮\)2x + 1 

=> 2 \(⋮\)2x + 1

=> 2x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}

Do : 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1}

+) 2x + 1 = 1 => 2x = 0 => x = 0

+) 2x + 1 = -1 => 2x = -2 => x = -1

b) 2x + y + 2xy - 3 = 0

=> 2x(1 + y) + (1 + y) = 4

=> (2x + 1)(1 + y) = 4

=> 2x + 1;1 + y \(\in\)Ư(4) = {1; -1;2 ;-2; 4; -4}

Do: 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1} 

            => 1 + y \(\in\){4; -4}

Lập bảng : 

    2x + 1     1      -1
    1 + y    4     -4
      x   0     -1
      y   3    -5

Vậy ....

c) x2 + 2xy = 0

=> x(x + 2y) = 0

=> \(\hept{\begin{cases}x=0\\x+2y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=0\\2y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy x = y = 0

3 tháng 5 2020
https://i.imgur.com/88Zm20M.jpg
3 tháng 5 2020
https://i.imgur.com/zsGzAKT.jpg

a: \(x^2\left(2x-3\right)+8x-12=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x^2+4\right)=0\)

=>2x-3=0

hay x=3/2

b: \(\Leftrightarrow\left(2x-5\right)\left(2x+10\right)-\left(2x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+10-x+1\right)=0\)

=>(2x-5)(x+11)=0

=>x=5/2 hoặc x=-11

c: \(\Leftrightarrow2x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

hay \(x\in\left\{0;4;-4\right\}\)

4 tháng 2 2017

a) x3+4x2+x-6=0

<=> x3+x2-2x+3x2+3x-6=0

<=>x(x2+x-2)+3(x2+x-2)=0

<=>(x+3)(x2+x-2)=0

<=>(x+3)(x2+2x-x-2)=0

<=>(x+3)[x(x+2)-(x+2)]=0

<=>(x+3)(x-1)(x+2)=0

=> x+3=0 hay

x-1=0 hay

x+2=0

<=> x=-3 hay x=1 hay x=-2

4 tháng 2 2017

b)x3-3x2+4=0

\(\Leftrightarrow x^3-4x^2+4x+x^2-4x+4=0\)

\(\Leftrightarrow x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)

\(\Rightarrow\left\{\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

1 tháng 9 2020

Sửa đề :

(x - 2)2 - 16 = 0

=> (x - 2)2 = 16

=> (x - 2)2 = (\(\pm\)4)2

=> \(\orbr{\begin{cases}x-2=4\\x-2=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=-2\end{cases}}\)

(x - 2)2 - x2 + 4 = 0

=> x2 - 4x + 4 - x2 + 4 = 0

=> (x2 - x2) - 4x + (4 + 4) = 0

=> -4x + 8 = 0

=> -4x = -8

=> x = 2

(2x + 3)2 - (\(\frac{1}{3}-2x\))2 = -2/3x + 5

=> \(\left(2x+3\right)\left(2x+3\right)-\left(\frac{1}{3}-2x\right)\left(\frac{1}{3}-2x\right)=-\frac{2}{3}x+5\)

=> \(2x\left(2x+3\right)+3\left(2x+3\right)-\frac{1}{3}\left(\frac{1}{3}-2x\right)+2x\left(\frac{1}{3}-2x\right)=-\frac{2}{3}x+5\)

=> \(4x^2+6x+6x+9-\frac{1}{9}+\frac{2}{3}x+\frac{2}{3}x-4x^2=-\frac{2}{3}x+5\)

=> \(\left(4x^2-4x^2\right)+\left(6x+6x+\frac{2}{3}x+\frac{2}{3}x\right)+\left(9-\frac{1}{9}\right)+\frac{2}{3}x-5=0\)

=> \(\frac{40}{3}x+\frac{80}{9}+\frac{2}{3}x-5=0\)

=> \(\frac{40}{3}x+\frac{2}{3}x+\frac{80}{9}-5=0\)

=> 14x + 80/9 - 5 = 0

=> x = -5/18

6 tháng 9 2020

1. (x + 2)(x2 - 2x + 4) - (x3 + 2x2) = 5

=> x(x2 - 2x + 4) + 2(x2 - 2x + 4) - x3 - 2x2 - 5 = 0

=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 - 2x2 - 5 = 0

=> (x3 - x3) + (-2x2 + 2x2 - 2x2) + (4x - 4x) + (8 - 5) = 0

=> -2x2 + 3 = 0

=> -2x2 = -3

=> x2 = 3/2

=> x = \(\pm\sqrt{\frac{3}{2}}\)

2. \(\left(x+5\right)^2-6=0\)

=> x2 + 10x + 25 - 6 = 0

=> x2 + 10x + 19 = 0

=> x vô nghiệm(do mình không để căn nên ghi vô nghiệm thôi nhá)

3. \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=2x\)

=> x(x2 - 3x + 9) + 3(x2 - 3x + 9) - x3 - 2x = 0

=> x3 - 3x2 + 9x + 3x2 - 9x + 27 - x3 - 2x = 0

=> (x3 - x3) + (-3x2 + 3x2) + (9x - 9x - 2x) + 27 = 0

=> -2x + 27 = 0

=> -2x = -27

=> x = 27/2

4. \(\left(x-2\right)^3-x^3+6x^2=7\)

=> x3 - 6x + 12x - 8 - x3 + 6x2 = 7

=> (x3 - x3) + (-6x2 + 6x2) + 12x - 8 = 7

=> 12x - 8 = 7

=> 12x = 15

=> x = 5/4

5. \(3\left(x-2\right)^2+9\left(x-1\right)-3\left(x^2+x-3\right)=12\)

=> 3x2 - 12x + 12 + 9x - 9 - 3x2 - 3x + 9 = 12

=> (3x2 - 3x2) + (-12x + 9x - 3x) + (12 - 9 + 9) = 12

=> -6x + 12 = 12

=> -6x = 0

=> x = 0

6. \(\left(4x+3\right)^2-\left(4x-3\right)^2-5x-2=0\)

=> 48x - 5x - 2 = 0

=> 43x - 2 = 0

=> 43x = 2

=> x = 2/43

Còn bài cuối tự làm :>

6 tháng 9 2020

Anh Sang làm cầu kì quá ;-;

1. ( x + 2 )( x2 - 2x + 4 ) - ( x3 + 2x2 ) = 5

<=> x3 + 8 - x3 - 2x2 = 5

<=> 8 - 2x2 = 5

<=> 2x2 = 3

<=> x2 = 3/2

<=> \(x^2=\left(\pm\sqrt{\frac{3}{2}}\right)^2\)

<=> \(x=\pm\sqrt{\frac{3}{2}}\)

2. ( x + 5 )2 - 6 = 0

<=> ( x + 5 )2 - ( √6 )2 = 0

<=> ( x + 5 - √6 )( x + 5 + √6 ) = 0

<=> \(\orbr{\begin{cases}x+5-\sqrt{6}=0\\x+5+\sqrt{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-5\\x=-\sqrt{6}-5\end{cases}}\)

3. ( x + 3 )( x2 - 3x + 9 ) - x3 = 2x

<=> x3 + 27 - x3 = 2x

<=> 27 = 2x

<=> x = 27/2

4. ( x - 2 )3 - x3 + 6x2 = 7

<=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7

<=> 12x - 8 = 7

<=> 12x = 15

<=> x = 15/12 = 5/4

5. 3( x - 2 )2 + 9( x - 1 ) - 3( x2 + x - 3 ) = 12

<=> 3( x2 - 4x + 4 ) + 9x - 9 - 3x2 - 3x + 9 = 12

<=> 3x2 - 12x + 12 + 6x - 3x2 = 12

<=> -6x + 12 = 12

<=> -6x = 0

<=> x = 0

6. ( 4x + 3 )2 - ( 4x - 3 )2 - 5x - 2 = 0

<=> 16x2 + 24x + 9 - ( 16x2 - 24x + 9 ) - 5x - 2 = 0

<=> 16x2 + 24x + 9 - 16x2 + 24x - 9 - 5x - 2 = 0

<=> 43x - 2 = 0

<=> 43x = 2

<=> x = 2/43

7, ( 4x + 7 )( 2 - 3x ) - ( 6x + 2 )( 5 - 2x ) = 0

<=> -12x2 - 13x + 14 - ( -12x2 + 26x + 10 ) = 0

<=> -12x2 - 13x + 14 + 12x2 - 26x - 10 = 0

<=> -39x + 4 = 0

<=> -39x = -4

<=> x = 4/39

19 tháng 10 2020

a, \(x\left(x+1\right)-x\left(x-5\right)=6\Leftrightarrow x^2+x-x^2+5x=6\)

\(\Leftrightarrow x=1\)

b, \(4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

c, \(x^2-\frac{1}{4}=0\Leftrightarrow\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\Leftrightarrow x=\pm\frac{1}{2}\)

d, \(5x^2=20x\Leftrightarrow5x^2-20x=0\Leftrightarrow5x\left(x-4\right)=0\Leftrightarrow x=0;4\)

e, \(4x^2-9-x\left(2x-3\right)=0\Leftrightarrow4x^2-9-2x^2=3x\Leftrightarrow2x^2-9-3x=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x-3\right)=0\Leftrightarrow x=-\frac{3}{2};3\)

f, \(4x^2-25=\left(2x-5\right)\left(2x+7\right)\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow-2\left(2x+5\right)=0\Leftrightarrow x=-\frac{5}{2}\)

19 tháng 10 2020

a) x( x + 1 ) - x( x - 5 ) = 6

⇔ x2 + x - x2 + 5x = 6

⇔ 6x = 6

⇔ x = 1

b) 4x2 - 4x + 1 = 0

⇔ ( 2x - 1 )2 = 0

⇔ 2x - 1 = 0

⇔ x = 1/2

c) x2 - 1/4 = 0

⇔ ( x - 1/2 )( x + 1/2 ) = 0

⇔ \(\orbr{\begin{cases}x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}}\Leftrightarrow x=\pm\frac{1}{2}\)

d) 5x2 = 20x

⇔ 5x2 - 20x = 0

⇔ 5x( x - 4 ) = 0

⇔ \(\orbr{\begin{cases}5x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

e) 4x2 - 9 - x( 2x - 3 ) = 0

⇔ ( 2x - 3 )( 2x + 3 ) - x( 2x - 3 ) = 0

⇔ ( 2x - 3 )( 2x + 3 - x ) = 0

⇔ ( 2x - 3 )( x + 3 ) = 0

⇔ \(\orbr{\begin{cases}2x-3=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-3\end{cases}}\)

f) 4x2 - 25 = ( 2x - 5 )( 2x + 7 )

⇔ ( 2x - 5 )( 2x + 5 ) - ( 2x - 5 )( 2x + 7 ) = 0

⇔ ( 2x - 5 )( 2x + 5 - 2x - 7 ) = 0

⇔ ( 2x - 5 )(-2) = 0

⇔ 2x - 5 = 0

⇔ x = 5/2