K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

Ta có \(\left|x+1\right|\ge0;\left|x+\frac{1}{3}\right|\ge0;...;\)\(\left|x+\frac{1}{190}\right|\ge0\)    \(\forall x\)

=> \(\left|x+1\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{190}\right|\ge0\)   \(\forall x\)

=> \(20x\ge0\Rightarrow x\ge0\)

Với \(x\ge0\)  =>  \(x+1>0,x+\frac{1}{3}>0,x+\frac{1}{6}>0,...,x+\frac{1}{190}>0\)

                        => \(\left|x+1\right|=x+1,\left|x+\frac{1}{3}\right|=x+\frac{1}{3},\left|x+\frac{1}{6}\right|=x+\frac{1}{6},...,\left|x+\frac{1}{190}\right|=x+\frac{1}{190}\)

=> \(x+1+x+\frac{1}{3}+x+\frac{1}{6}+...+x+\frac{1}{190}=20x\)

=> \(19x+\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{190}\right)=20x\)

=> \(x=\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{190}\right)\)

Gọi \(A=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{190}\)

=> \(\frac{1}{2}A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{380}\)

=> \(\frac{1}{2}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)

=> \(\frac{1}{2}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)

=> \(\frac{1}{2}A=1-\frac{1}{20}\)

=> \(A=\frac{19}{10}\)

Thay vào ta có 

=> \(x=-\frac{19}{10}\)

24 tháng 11 2019

mk nhầm nha bạn \(x=\frac{19}{10}\)

NV
4 tháng 4 2019

a/ \(x^2+y^2=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) \(\Rightarrow A=0\)

b/ Do \(x=19\Rightarrow20=x+1\)

\(B=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+20\)

\(B=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+20\)

\(B=20-x=20-19=1\)

c/ \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

\(C=\frac{\left(x+y\right)}{y}.\frac{\left(y+z\right)}{z}.\frac{\left(x+z\right)}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)

23 tháng 8 2019

Ta có : \(\frac{x-5}{5x-1}=\frac{4x-10}{20x+4}\)

=> \(\frac{x-5}{5x-1}=\frac{2x-5}{10x+2}\)

=> (x - 5)(10x + 2) = (2x - 5)(5x - 1)

=> 10x2  + 2x - 50x - 10 = 10x2 - 2x - 25x + 5

=> 10x2 - 48x - 10x2 + 27x = 5 + 10

=> -21x = 15

=> x = 15 : (-21) = -5/7

Thay x = -5/7 vào \(\frac{x-5}{5x-1}=\frac{y}{3}\)

=> \(\frac{-\frac{5}{7}-5}{5.\left(-\frac{5}{7}\right)-1}=\frac{y}{3}\)

=> \(\frac{-\frac{40}{7}}{-\frac{32}{7}}=\frac{y}{3}\)

=> \(\frac{5}{4}=\frac{y}{3}\)

=> 4y = 15

=> y = 15/4

Vậy ...

Ta có: \(\frac{5}{y}=\frac{3}{x}\) => \(\frac{x}{3}=\frac{y}{5}\) => \(\frac{x^2}{9}=\frac{y^2}{25}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x^2}{9}=\frac{y^2}{25}=\frac{y^2+x^2}{25+9}=\frac{125}{34}\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=\frac{125}{34}\\\frac{y^2}{25}=\frac{125}{34}\end{cases}}\)  => \(\hept{\begin{cases}x^2=\frac{125}{34}.9=\frac{1125}{34}\\y^2=\frac{125}{34}.25=\frac{3125}{34}\end{cases}}\) => \(\hept{\begin{cases}x=\pm\frac{15\sqrt{170}}{34}\\y=\pm\frac{25\sqrt{170}}{34}\end{cases}}\)

12 tháng 8 2018

1)  \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)

<=>  \(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)

<=>  \(x+1=0\)  (do  1/2 + 1/3 + 1/4 - 1/5 - 1/6 khác 0)

<=>  \(x=-1\)

Vậy...

12 tháng 8 2018

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

<=>  \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)

<=>  \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

<=>  \(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

<=>  \(x+2010=0\)  (do  1/2009 + 1/2008 + 1/2007 - 1/2000 - 1/1999 - 1/1998 khác 0)

<=>  \(x=-2010\)

Vậy....

5 tháng 6 2019

#)Giải :

a) x + 2x + 3x + ... + 100x = - 213

=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213 

=> 100x + 5049 = - 213 

<=> 100x = - 5262

<=> x = - 52,62

5 tháng 6 2019

#)Giải :

b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)

\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)

\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)

\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)

\(\Leftrightarrow x=\frac{2}{3}\)

3 tháng 7 2019

\(a,\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)

TH1 : \(\frac{1}{7}x-\frac{2}{7}=0\Rightarrow\frac{x-2}{7}=0\Rightarrow x-2=0\Leftrightarrow x=2\)

TH2 : \(-\frac{1}{5}x+\frac{3}{5}=0\Rightarrow\frac{-x+3}{5}=0\Rightarrow-x+3=0\Leftrightarrow x=3\)

TH3 : \(\frac{1}{3}x+\frac{4}{3}=0\Rightarrow\frac{x+4}{3}=0\Rightarrow x+4=0\Leftrightarrow x=-4\)

\(\Rightarrow x\in\left\{2;3;-4\right\}\)

3 tháng 7 2019

\(b,\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)

\(\Rightarrow\frac{5}{30}x+\frac{3}{30}x-\frac{8}{30}x+1=0\)

\(\Rightarrow\frac{5x+3x-8x}{30}+1=0\)

\(\Rightarrow1=0\)( vô lý )\(\Rightarrow x\in\varnothing\)

21 tháng 6 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2016}{2017}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2016}{2017}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2016}{2017}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2016}{2017}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2016}{2017}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1008}{2007}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4034}\)

\(\Leftrightarrow x+1=4034\)

\(\Leftrightarrow x=4033\)

Vậy x = 4033

21 tháng 6 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2016}{2017}\)

=> \(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2016}{2017}\right)\)

=> \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2016}{2017}\)

=> \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2016}{1017}\)

=> \(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2016}{2017}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2016}{2017}:2\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{1008}{2017}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{1008}{2017}\)

=> \(\frac{1}{x+1}=\frac{1}{4034}\)

Vì 1 = 1

=> x + 1 = 4034

=> x       = 4034 - 1

=> x       = 4033

Lưu ý : Dấu "." là dấu nhân