K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LT
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AM
0
NT
1
NV
15 tháng 6 2016
ĐKXĐ: \(x\ge1\)
\(x^2-25+2\sqrt{x-1}-\sqrt{2x+6}>0\Rightarrow\left(x-5\right)\left(x+5\right)+2\sqrt{x-1}-\sqrt{2x+6}>0\)
\(\Rightarrow\left(x-5\right)\left(x+5\right)+\frac{\left(2\sqrt{x-1}\right)^2-\left(\sqrt{2x+6}\right)^2}{2\sqrt{x-1}+\sqrt{2x+6}}>0\)
\(\Rightarrow\left(x-5\right)\left(x+5\right)+\frac{2\left(x-5\right)}{2\sqrt{x-1}+\sqrt{2x+6}}>0\)
\(\Rightarrow\left(x-5\right)\left[\left(x+5\right)+\frac{2}{2\sqrt{x-1}+\sqrt{2x+6}}\right]>0\)
mà \(\left(x+5\right)+\frac{2}{2\sqrt{x-1}+\sqrt{2x+6}}>0\) => x - 5 > 0 => x > 5
Vậy x > 5
Điều kiện \(x\ge0\)
\(\sqrt{x}=x\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
TL:
x=0
x=1
-HT-