K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

=> (x+2) 2 = (2x+1) 0,5

2x + 4 = x+0,5

=> x= -3,5

17 tháng 4 2016

Ta có:  $\frac{x+2}{0,5}=\frac{2x+1}{2}$

=>2*(x+2)=0,5*(2x+1)

=>2x+4=x+0,5

=>2x-x=0,5-4

=>x=-3,5

17 tháng 4 2016

\(\Leftrightarrow2x+4=x+0,5\)

\(x=0,5-4=-3,5\)

8 tháng 3 2016

Câu 1: x=-2;-1

Câu 2:

Câu 3: x=20

y=16

z=12

Câu 4: 0 bộ

8 tháng 3 2016
Ở câu 2 viết 43/30 dưới dạng liên phân số rồi đối chiếu kết quả để tìm x,y,z( vì mỗi phân số chỉ viết dược dưới dạng 1 liên phân số
3 tháng 1 2019

Thay 1/3 vào x là xong

NGU VL

Xét hàm số f(x) thỏa mãn f(x)+2f(1/x)=x^2. với mọi x thuộc R.
Đúng với x = 2 . => f(2) + 2f(1/2) = 2^2 = 4
=> f(2) + 2f(1/2) = 4 ( 1 )
Đúng với x = 1/2 => f(1/2) + 2f(2) = (1/2)^2 = 1/4.
=> 2f(2) + f (1/2) = 1/4.=> 4f(2) + 2f(1/2) = 2/4 ( 2 )
Lấy (2) trừ (1) ta đc :  3f(2) = 2/4 - 4 = -7/2
=> f(2) = -7/2: 3= -7/6

18 tháng 9 2018

1.

a. \(\frac{x}{y}=-\frac{3}{7}\Leftrightarrow\frac{x}{3}=\frac{-y}{7}\Leftrightarrow\frac{x}{3}=\frac{x+\left(-y\right)}{3+7}=\frac{x-y}{10}=-4\)

Bạn tự tính tiếp nhé ^^.

b. \(\frac{x}{3}=\frac{y}{12}=\frac{z}{5}\Rightarrow\left(\frac{x}{3}\right)^3=\frac{x}{3}.\frac{y}{12}.\frac{z}{5}=\frac{x.y.z}{3.12.5}=\frac{22,5}{180}=\frac{1}{8}\)

\(\frac{x^3}{27}=\frac{1}{8}\Rightarrow x^3=\left(27.8\right)=3^3.2^3=\left(3.2\right)^3\)

Đến đây bạn tìm được x rồi ^^

c.\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{y}{5}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=\frac{-970}{10}}\)

Đến đây bạn tính được rồi nhé! ^^

2. Bài 2 chỉ cần chuyển vế là ra : \(x+1=2\)

18 tháng 9 2018

a) ta có: \(\frac{x}{y}=\frac{-3}{7}\Rightarrow\frac{x}{-3}=\frac{y}{7}\)

ADTCDTSBN

...

b) ta có: \(\frac{x}{3}=\frac{y}{12}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=3k\\y=12k\\z=5k\end{cases}}\)

mà x.y.z = 22,5 => 3k.12k.5k = 22,5

                                  180.k3 = 22,5

                                         k3 = 1/8 = (1/2)3

=> k = 1/2

=> x = 3.1/2 = 3/2

y = 12.1/2 = 6

z = 5.1/2 = 5/2

KL:...

17 tháng 12 2016

ta co: 6x-2y=x+y(nhan cheo)

\(\Rightarrow\)5x=3y

\(\Rightarrow\)x/y=3/5

21 tháng 9 2020

\(\hept{\begin{cases}\frac{4x}{5}=\frac{3y}{2}\\\frac{4y}{5}=\frac{5z}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}=\frac{y}{\frac{2}{3}}\\\frac{y}{\frac{5}{4}}=\frac{z}{\frac{3}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}\times\frac{1}{\frac{3}{2}}=\frac{y}{\frac{2}{3}}\times\frac{1}{\frac{3}{2}}\\\frac{y}{\frac{5}{4}}\times\frac{1}{\frac{4}{5}}=\frac{z}{\frac{3}{5}}\times\frac{1}{\frac{4}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{15}{8}}=\frac{y}{1}\\\frac{y}{1}=\frac{z}{\frac{12}{25}}\end{cases}}\Rightarrow\frac{x}{\frac{15}{8}}=\frac{y}{1}=\frac{z}{\frac{12}{25}}\)

2x - 3y + 4z = 5, 34

=> \(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}\)và 2x - 3y + 4z = 5, 34

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}=\frac{2x-3y+4z}{\frac{15}{4}-3+\frac{48}{25}}=\frac{5,34}{\frac{267}{100}}=2\)

\(\Rightarrow\hept{\begin{cases}x=2\cdot\frac{15}{8}=\frac{15}{4}\\y=2\cdot1=2\\z=2\cdot\frac{12}{25}=\frac{24}{25}\end{cases}}\)

Vậy ...

b) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)và 2x + 3y - z = 50

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\)

\(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)

\(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)

\(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)

Vậy ...

27 tháng 7 2017

Bài 3:

a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)

Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN

Mà \(\left|2x-\frac{1}{5}\right|\ge0\)

Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi

\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)

b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)

Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)

Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN

mà \(x+\frac{1}{2}\ge0\)

Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)

Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)

và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)

Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2

Phần b này thì mình không chắc lắm bạn tự xem lại nhé

27 tháng 7 2017

Bài 1: 

\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))

=> 11 - x = 1

=> x = 10

Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)