K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

a) x^3 - 64 - x^3 +6x = 2

(x^3 - x^3) + 6x = 2+64 quy tắc chuyển vế nhé bạn

6x = 66

x = 66:11

x = 6

 

21 tháng 8 2015

 

a,  ( 3x - 1 )^2 - 3x( 3x + 2 ) = 0

<=>9x2-6x+1-9x2-6x=0

<=>-12x+1=0

<=>-12x=-1

<=>x=1/12

 

b,  ( 2x + 3)^2 = 4x(x + 1 )

<=>(2x+3)2-4x(x+1)=0

<=>4x2+12x+9-4x2-4x=0

<=>8x+9=0

<=>8x=-9

<=>x=-9/8

c) vô fx gõ lại

d)x2-4x+4=16

<=>(x-2)2-16=0

<=>(x-2)2-42=0

<=>(x-2+4)(x-2-4)=0

<=>(x+2)(x-6)=0

<=>x+2=0 hoặc x-6=0

<=>x=-2 hoặc x=6

  

28 tháng 7 2021

bạn đăng tách ra nhé

a, \(\left(2x+1\right)\left(x-4\right)=\left(2x+1\right)^2\)

\(\Leftrightarrow2x^2-7x-4=4x^2+4x+1\Leftrightarrow2x^2+11x+5=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)=0\Leftrightarrow x=-5;x=-\frac{1}{2}\)

b, sửa đề :  \(\left(x-4\right)\left(x^2+4x+16\right)-\left(x^2-6\right)=2\)

\(\Leftrightarrow x^3-64-x^2+6=2\Leftrightarrow x^3-x^2-60=0\Leftrightarrow x=4,27...\)

c, \(\left(2x-1\right)^2-\left(3x+4\right)^2=0\Leftrightarrow\left(2x-1+3x+4\right)\left(2x-1-3x-4\right)=0\)

\(\Leftrightarrow\left(5x+3\right)\left(-x-5\right)=0\Leftrightarrow x=-\frac{3}{5};x=-5\)

d, \(\left(9x+2\right)\left(x-1\right)-\left(3x-1\right)^2=0\)

\(\Leftrightarrow9x^2-7x-2-9x^2+6x-1=0\Leftrightarrow-x-3=0\Leftrightarrow x=-3\)

28 tháng 7 2021

e, \(\left(2x+3\right)^2-4\left(x-1\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow4x^2+12x+9-4\left(x-1\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow4x^2+12x+9-4\left(x^3-x-x^2+1\right)=0\)

\(\Leftrightarrow4x^2+12x+9-4x^3+4x+4x^2-4=0\)

\(\Leftrightarrow-4x^3+8x^2+16x+5=0\Leftrightarrow x=-0,9...;x=-0,41...;x=3,31...\)

f, \(15x\left(x+4-6x-24\right)=0\Leftrightarrow15\left(-5x-20\right)=0\)

\(\Leftrightarrow-75x-300=0\Leftrightarrow x=-4\)

g, \(\left(4x-10\right)\left(2-3x\right)-30^2=0\)

\(\Leftrightarrow8x-12x^2-20+30x-900=0\Leftrightarrow-12x^2+38x-920=0\)

vô nghiệm 

20 tháng 3 2020

Bài 1.

\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)

20 tháng 3 2020

Bài 2.

\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)

ĐK: \(x\ne2\)

\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)

ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)

\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)

15 tháng 11 2018

a. 3x(x-2)-x+2=0

3x(x-2)-(x-2)=0

(3x-1)(x-2)=0

=>\(\hept{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)

=> \(\hept{\begin{cases}3x=1\\x=2\end{cases}}\)

=>\(\hept{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)

vậy x thuộc (1/3;2)

15 tháng 11 2018

b. 4x(x-3)-2x+6=0

4x(x-3) -2(x-3)=0

(4x-2)(x-3)

=>*4x-2=0

4x=2

x=1/2

*x-3=0

x=3

vậy x thuộc (1/2;3)

26 tháng 10 2017

Trần văn ổi ()

26 tháng 10 2017

đù khó thế

3 tháng 11 2017

A) \(\left(x-3\right)^2-\left(x+2\right)^2\)

\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)

\(=-5.\left(2x-1\right)\)

B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)

\(=8x^3-y^3-8x^3-y^3\)

\(=-2y^3\)

C) \(x^2+6x+8\)

\(=x^2+6x+9-1\)

\(=\left(x+3\right)^2-1\)

\(=\left(x+3-1\right)\left(x+3+1\right)\)

\(=\left(x+2\right)\left(x+4\right)\)

bài 3 A) \(x^2-16=0\)

\(\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

B) \(x^4-2x^3+10x^2-20x=0\)

\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\left(x^3+10x\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

3 tháng 8 2021

x=0

x=2

a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow2x=-7\)

hay \(x=-\dfrac{7}{2}\)

b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)

\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)

\(\Leftrightarrow24x=-13\)

hay \(x=-\dfrac{13}{24}\)