Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, -5(x-7)-7(x+3)=8 <=> -5x+35-7x+21=8<=>-12x=-48<=>x=4
B, 6(x+1)-5(x-2)=8<=>6x+6-5x+10=8<=>x=-8
C, 3x+4x+5x+6x=30<=>18x=30<=>x=\(\dfrac{5}{3}\)
D, (x+1)+(x+2)+(x+3)+...+(x+10)=144
<=> (x+x+x+x+x+x+x+x+x+x)+(1+2+3+4+5+6+7+8+9+10)=144
<=>10x+55=144<=>10x=89<=>x=\(\dfrac{89}{10}\)
a. (x - 2)2 = 1
<=> (x - 2)2 = 12 = (-1)2
<=> \(\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\begin{cases}x=3\\x=1\end{cases}\)
Vậy x \(\in\){1; 3}.
b. (2x - 1)3 = -8
<=> (2x - 1)3 = (-2)3
<=> 2x - 1 = -2
<=> 2x = -2 + 1
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2.
c. (x + 1/2)2 = 1/16
<=> (x + 1/2)2 = (1/4)2 = (-1/4)2
<=> \(\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}\Leftrightarrow\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}\)
Vậy x \(\in\){-1/4; -3/4}.
d. (x - 2)3 = -27
<=> (x - 2)3 = (-3)3
<=> x - 2 = -3
<=> x = -3 + 2
<=> x = -1
Vậy x = -1.
a.\(\left(x-2\right)^2\)=1
<=> x-2=1 hoặc x-2=-1
<=> x= 3 hoặc x=1
b.\(\left(2x-1\right)^3\)=-8
\(\left(2x-1\right)^3\)=\(\left(-2\right)^3\)
2x-1=-2
2x=-1
x=-1/2
c.\(\left(x+\frac{1}{2}\right)^2\)=\(\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2\)=\(\left(\frac{1}{4}\right)^2\)hoặc \(\left(x+\frac{1}{2}\right)^2\)=\(\left(-\frac{1}{4}\right)^2\)
x+\(\frac{1}{2}\)=\(\frac{1}{4}\) hoặc x+\(\frac{1}{2}\)=-\(\frac{1}{4}\)
x=-\(\frac{1}{4}\)hoặc x=-\(\frac{3}{4}\)
d.\(\left(x-2\right)^3\)=-27
\(\left(x-2\right)^3\)=\(\left(-3\right)^3\)
x-2=-3
x=-1
a, \(\left(x-\frac{1}{4}\right)^2=\frac{4}{9}=>\left(x-\frac{1}{4}\right)=\sqrt{\frac{4}{9}}=\frac{2}{3}\)
=> \(x=\frac{1}{4}+\frac{2}{3}=\frac{11}{12}\)
b, \(\left(x+0,7\right)^3=-8=>\left(x+0,7\right)^3-2^3\)
=> \(x+0,7=-2=>x=-2-0,7=-2,7\)
c \(2^x+2^{x+3}=144=>2^x+2^x.8=144\)
=>\(2^x.\left(8+1\right)=144=>2^x.9=144=>2^x=16\)
=> \(2^x=2^4=>x=4\)
d, \(5-2:\left|x-2\right|=1=>2:\left|x-1\right|=4\)
=> \(\left|x-2\right|=\frac{2}{4}=\frac{1}{2}\)
vậy \(x-2=\frac{1}{2}hoacx-2=-\frac{1}{2}\)
x = \(\frac{2}{5}\) x = \(\frac{3}{2}\)
a )
\(\left(x-\frac{1}{4}\right)^2=\frac{4}{9}\)
\(\left(x-\frac{1}{4}\right)^2=\left(\pm\frac{2}{3}\right)^2\)
\(\Rightarrow x-\frac{1}{4}=\frac{2}{3}\) hoặc \(x-\frac{1}{4}=-\frac{2}{3}\)
\(x=\frac{2}{3}+\frac{1}{4}\) hoặc \(x=-\frac{2}{3}+\frac{1}{4}\)
\(x=\frac{8}{12}+\frac{3}{12}\) hoặc \(x=-\frac{8}{12}+\frac{3}{12}\)
\(x=\frac{11}{12}\) hoặc \(x=-\frac{5}{12}\)
b)
\(\left(x+0,7\right)^3=-8\)
\(\left(x+0,7\right)^3=\left(-2\right)^3\)
\(\Rightarrow x+0,7=-2\)
\(x=-2-0,7\)
\(x=-2,7\)
c)
\(2^x+2^{x+3}=144\)
\(2^x\cdot1+2^x\cdot2^3=144\)
\(2^x\cdot\left(1+2^3\right)=144\)
\(2^x\cdot\left(1+8\right)=144\)
\(2^x\cdot9=144\)
\(2^x=144:9\)
\(2^x=16\)
\(2^x=2^4\) \(\Rightarrow x=4\)
d)
\(5-2:\left|x-2\right|=2\)
\(5-\left|x-2\right|=2\cdot2\)
\(5-\left|x-2\right|=4\)
\(\left|x-2\right|=5-4\)
\(\left|x-2\right|=1\)
\(\left|x-2\right|=\pm1\)
\(x-2=1\) hoặc \(x-2=-1\)
\(x=1+2\) hoặc \(x=-1+2\)
\(x=3\) hoặc \(x=1\)
1) \(\frac{25}{12}.x+\frac{11}{15}=\frac{9}{10}\)
=> \(\frac{25}{12}.x=\frac{9}{10}-\frac{11}{15}\)
=> \(\frac{25}{12}.x=\frac{1}{6}\)
=> \(x=\frac{1}{6}:\frac{25}{12}\)
=> \(x=\frac{2}{25}\)
Vậy \(x=\frac{2}{25}\).
3) \(\frac{29}{12}.\left[x\right]-\frac{5}{6}=\frac{3}{8}\)
=> \(\frac{29}{12}.\left[x\right]=\frac{3}{8}+\frac{5}{6}\)
=> \(\frac{29}{12}.x=\frac{29}{24}\)
=> \(x=\frac{29}{24}:\frac{29}{12}\)
=> \(x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\).
4) \(\left[4x+\frac{3}{4}\right]-\frac{5}{4}=2\)
=> \(\left[4x+\frac{3}{4}\right]=2+\frac{5}{4}\)
=> \(4x+\frac{3}{4}=\frac{13}{4}\)
=> \(4x=\frac{13}{4}-\frac{3}{4}\)
=> \(4x=\frac{5}{2}\)
=> \(x=\frac{5}{2}:4\)
=> \(x=\frac{5}{8}\)
Vậy \(x=\frac{5}{8}\).
5) 2x + 2x+3 = 144
⇔ 2x + 2x . 23 = 144
⇔ 2x . (1 + 23) = 144
⇔ 2x . 9 = 144
⇔ 2x = 144 : 9
⇔ 2x = 16
⇔ 2x = 24
=> x = 4
Vậy x = 4.
Chúc bạn học tốt!
A. 2.\(|3x+1|\)=\(\frac{3}{4}\)-\(\frac{5}{8}\)
2.\(|3x+1|\)=1/8
\(|3x+1|\)=1/8:2
\(|3x+1|\)=1/16
TH1 : 3x+1=1/16
3x=1/16-1
3x=-15/16
x=-15/16:3
x=-5/16
a,\(\frac{3}{4}-2.\left|3x+1\right|=\frac{5}{8}\)
\(\Rightarrow2.\left|3x+1\right|=\frac{3}{4}-\frac{5}{8}=\frac{6}{8}-\frac{5}{8}=\frac{1}{8}\)
\(\Rightarrow\left|3x+1\right|=\frac{1}{8}.\frac{1}{2}=\frac{1}{16}\)
\(\Rightarrow\orbr{\begin{cases}3x+1=\frac{1}{16}\\3x+1=\frac{-1}{16}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}3x=\frac{1}{16}-1=\frac{-15}{16}\\3x=\frac{-1}{16}-1=\frac{-17}{16}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-15}{16}.\frac{1}{3}=\frac{-5}{16}\\x=\frac{-17}{16}.\frac{1}{3}=\frac{-17}{48}\end{cases}}\)
Vậy....
b,\(\left|3x+2\right|-\left|x-3\right|=\frac{7}{2}\left(1\right)\)
Ta có bảng xét dấu
x | \(\frac{-2}{3}\) 3 |
3x+2 | - 0 + | + |
x-3 | - | - 0 + |
Nếu x<\(\frac{-2}{3}\) thì \(\left|3x+2\right|-\left|x-3\right|\) \(=-3x-2-3+x\)
\(=-2x-5\)
Từ (1) \(\Rightarrow-2x-5=\frac{7}{2}\)
\(\Rightarrow-2x=\frac{7}{2}+5=\frac{17}{2}\)
\(\Rightarrow x=\frac{17}{2}\cdot\frac{-1}{2}=\frac{-17}{4}\)(thỏa mãn x<\(\frac{-2}{3}\)
Nếu \(\frac{-2}{3}\le x\le3\)thì \(\left|3x+2\right|-\left|x-3\right|=3x+2-\left(3-x\right)\)
\(=3x+2-3+x\)
\(=2x-1\)
Từ (1)\(\Rightarrow\)\(2x-1=\frac{7}{2}\)
\(\Rightarrow2x=\frac{9}{2}\)
\(\Rightarrow x=\frac{9}{4}\)(thỏa mãn......
Còn trưonwfg hợp cuối bạn tự làm nốt nhé