Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\Leftrightarrow\left(2x-5\right).-2=0\)
\(\Leftrightarrow-4x+10=0\)
\(\Leftrightarrow-4x=-10\)
\(\Leftrightarrow x=\frac{5}{2}.\)
Vậy \(S=\left\{\frac{5}{2}\right\}\)
2)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right).\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\)
\(\Leftrightarrow x+3=0\)hoặc \(x=0\)hoặc \(x-2=0\)
\(\Leftrightarrow x=-3\)hoặc \(x=0\)hoặc \(x=2\)
Vậy \(S=\left\{-3;0;2\right\}\)
\(\left(4x^2-25\right)^2-9\left(2x-5\right)^2=0\)
\(\left[\left(2x-5\right)\left(2x+5\right)\right]^2-9\left(2x-5\right)^2=0\)
\(\left(2x-5\right)^2\left[\left(2x+5\right)^2-9\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x-5\right)^2=0\\\left(2x+5\right)-9=0\end{cases}}\)
+) \(\left(2x-5\right)^2=0\)
\(\Rightarrow2x-5=0\)
\(\Leftrightarrow x=\frac{5}{2}\)
+) \(\left(2x+5\right)^2-9=0\)
\(\Leftrightarrow\left(2x+5-3\right)\left(2x+5+3\right)=0\)
\(\Leftrightarrow\left(2x+2\right)\left(2x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+2=0\\2x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
Vậy ....
8x2+30x+7=0
8x2+16x+14x+7=0
8x(x+2) +7(x+2)=0
(8x+7)(x+2)=0
=>\(\orbr{\begin{cases}8x+7=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{7}{8}\\x=-2\end{cases}}}\)
\(\Rightarrow\left[\left(2x+5\right)\left(2x-5\right)\right]^2-9\left(2x-5\right)^2=0\)
\(\Rightarrow\left(2x-5\right)^2\left[\left(2x+5\right)^2-3^2\right]=0\)
\(\Rightarrow\left(2x-5\right)^2\left(2x+5-3\right)\left(2x+5+3\right)=0\)
\(\Rightarrow\left(2x-5\right)^2=0\Rightarrow2x-5=0\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)
hoặc \(2x+2=0\Rightarrow2x=-2\Rightarrow x=-1\)
hoặc \(2x+8=0\Rightarrow2x=-8\Rightarrow x=-4\)
vậy x = 5/2 ; x = -1 ; x = -4
\(\left(5x-2\right)\left(2x+7\right)-4x^2-25=0\)
\(10x+35-4x^2-14x-4x^2+25=0\)
\(-4x+60-8x^2=0\)
\(-4\left(2x^2+x-15\right)=0\)
\(-4\left(2x^2+6x-5x-15\right)=0\)
\(-4\left(2x-5\right)\left(x+3\right)=0\)
=> \(x\) ∈ \(\left\{\dfrac{5}{2};-3\right\}\)
\(\Rightarrow25\left(x+1\right)^4-26\left(x+1\right)^2+1=0\Leftrightarrow25\left(x+1\right)^4-25\left(x+1\right)^2-\left(\left(x+1\right)^2-1\right)=0\)
\(\Leftrightarrow25\left(x+1\right)^2.\left(\left(x+1\right)^2-1\right)-\left(\left(x+1\right)^2-1\right)=0\)
\(\Leftrightarrow\left(\left(x+1\right)^2-1\right).\left(25\left(x+1\right)^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)^2-1=0\\25\left(x+1\right)^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,-2\\x=-\frac{4}{5},-\frac{6}{5}\end{cases}}}\)
\(x^2+x-1=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2-\frac{5}{4}=0\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{\sqrt{5}}{2}\\x+\frac{1}{2}=\frac{-\sqrt{5}}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}-1}{2}\\x=\frac{-\sqrt{5}-1}{2}\end{cases}}}\)
ĐKXĐ:\(2x-5\ne0\Rightarrow x\ne\dfrac{5}{2}\)
\(\dfrac{4x^2-25}{2x-5}=0\\ \Leftrightarrow\dfrac{\left(2x-5\right)\left(2x+5\right)}{2x-5}=0\\ \Leftrightarrow2x+5=0\\ \Leftrightarrow x=-\dfrac{5}{2}\left(tm\right)\)
\(\dfrac{4x^2-25}{2x-5}\)
\(=\dfrac{\left(2x-5\right)\left(2x+5\right)}{2x-5}\)\(=2x+5=0\)
\(\Rightarrow x=-\dfrac{5}{2}\)