Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, ( x2 + x ) ( x2 + x + 1 )=6
=> ( x2 + x ) ( x2 + x + 1) - 6 = 0
=> ( x - 1 ) ( x + 2 ) ( x2 + x +3 ) = 0
=> x - 1= 0 => x= 1
=> x + 2 = 0 => x = -2
=> x2 + x + 3 = 0 => 12 - 4 ( 1.3 ) = -11 ( vô lí )
Vậy x = 1; x= -2
a) \(2x^3-x^2+3x+6=0\)
\(\left(2x^3-x^2\right)+\left(3x+6\right)=0\)
\(x^2\left(2-x\right)-3\left(2-x\right)=0\)
\(\left(x^2-3\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-3=0\\2-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)\(\)
vậy \(\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)
a) \(\left(x+2\right)^2-9=0\)
\(=>\left(x+2\right)^2-3^2=0\\ =>\left(x+2-3\right).\left(x+2+3\right)=0\)
\(=>\left(x-1\right).\left(x+5\right)=0\)
\(=>\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}=>\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy x= 1 hoặc x= -5
b) \(x^2-2x+1=25\)
\(=>x^2-2.x.x+1^2=25\)
\(=>\left(x-1\right)^2-25=0\\ =>\left(x-1\right)^2-5^2=0\)
\(=>\left(x-1-5\right).\left(x-1+5\right)=0\)
\(=>\left(x-6\right).\left(x+4\right)=0=>\orbr{\begin{cases}x-6=0\\x+4=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
Vậy x= 6 hoặc x= -4
c) \(4x\left(x-1\right)-\left(2x+5\right)\left(2x-5\right)=1\)
\(=>4x\left(x-1\right)-\left[\left(2x\right)^2-5^2\right]=1\)
\(=>4x\left(x-1\right)-4x^2+25-1=0\)
\(=>4x\left(x-1\right)-4x^2+24=0\)
\(=>4x\left(x-1\right)-\left(4x^2-24\right)=0\\ =>4x\left(x-1\right)-4\left(x^2-6\right)=0\)
..................... tắc ròi -.-"
d) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+3\right)=15\)
\(=>x^3+27-x^3-3x=15\)
\(=>27-3x-15=0=>12-3x=0=>3\left(4-x\right)=0\)
Vì \(3>0=>4-x=0=>x=4\)
Vậy x= 4
e) \(3\left(x+2\right)^2+\left(2x+1\right)^2-7\left(x+3\right)\left(x-3\right)=28\)
\(=>3\left(x^2+2.x.2+2^2\right)+4x^2+4x+1-7\left(x^2-9\right)=28\)
\(=>3\left(x^2+4x+4\right)+4x^2+4x+1-7x^2+63=28\)
\(=>3x^2+12x+12+4x^2+4x+1-7x^2+63=28\)
\(=>16x+75=28=>16x=-47=>x=\frac{-47}{16}\)
Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt :>'-'
BÀI 1:
Ta có: \(VT=\left(7x+1\right)^2-\left(x+7\right)^2\)
\(=\left(7x+1+x+7\right)\left(7x+1-x-7\right)\)
\(=\left(8x+8\right)\left(6x-6\right)\)
\(=8\left(x+1\right).6\left(x-1\right)\)
\(=48\left(x^2-1\right)=VP\) (đpcm)
Bài 2:
\(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow\)\(16x^2-16x^2+40x-25=15\)
\(\Leftrightarrow\)\(40x=40\)
\(\Leftrightarrow\)\(x=1\)
Vậy...
Bài 3:
\(A=x^2+2x+3=\left(x+1\right)^2+2\ge2\)
Vậy MIN A = 2 khi x = -1
a) (2x+3)(4x2-6x+9)-2(4x3-1)+(8x-1)=15
<=>8x3+27-8x3+2+8x-1=15
<=>8x+28=15
<=>8x=-13
<=>x=-13/8
b) (x+3)3-(x+9)(x2+27)-(5x-216) = 3x-4
<=>x3+9x2+27x+27-x3-27x-9x2-243-5x+216=3x-4
<=>-5x=3x-4
<=>8x=4
<=>x=1/2
\(x^2-16=0\)
\(\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
\(\left(2x-3\right)^2-4x^2=-15\)
\(\left(2x-3\right)^2-\left(2x\right)^2=-15\)
\(\left(2x-3-2x\right)\left(2x-3+2x\right)=-15\)
\(-3.\left(4x-3\right)=-15\)
\(\Leftrightarrow4x-3=5\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
a) Ta có: \(\left(x+y\right)^2-8\left(x+y\right)+12\)
\(=\left[\left(x+y\right)^2-8\left(x+y\right)+16\right]-4\)
\(=\left(x+y-4\right)^2-4\)
\(=\left(x+y\right)\left(x+y-8\right)\)
(2x+3)2-4x2=15
\(\left(2x+3-2x\right)\left(2x+3+2x\right)=15\)
\(3\left(4x+3\right)=15\)
4x+3=5
4x=2
x=1/2
b)
\(x^2-36+2\left(6-x\right)=0\)
\(\left(x-6\right)\left(x+6\right)-2\left(x-6\right)=0\)
\(\left(x-6\right)\left(x+6-2\right)=0\)
\(\left(x-6\right)\left(x+4\right)=0\)
x-6=0 hoặc x+4=0
x=6 hoặc x=-4
(2x - 3)^2 - 4x^2 = 15
(2x - 3)^2- (2x)^2 = 15
=> (2x - 3 + 2x)(2x - 3 - 2x) = 15
=> -3(4x - 3) = 15
=> 4x - 3 =
15−3−15−3 = -5
=> 4x = (-5) + 3 = -2
=> x = -2/4 = -1/2
Giải thích các bước giải:
* Dùng HĐT A2A2 - B2B2 = (A - B)(A + B)
* Áp dụng kĩ năng tìm x đã học