Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy bài dễ tự làm nhé:D
1)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)
Ta có điều phải chứng minh
\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)
Ta có điều phải chứng minh
\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
\(\Rightarrow x;1-2y\in U\left(40\right)\)
\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Mà 1-2y lẻ nên:
\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)
b tương tự.
c) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)
d tương tự
a)
ĐKXĐ: \(2x\geq 0\Leftrightarrow x\geq 0\)
Vậy TXĐ của $x$ là \(D= [0;+\infty)\)
b)
ĐK: \((2x-1)(x+3)\neq 0\Leftrightarrow \left\{\begin{matrix} 2x-1\neq 0\\ x+3\neq 0\end{matrix}\right.\Leftrightarrow \Leftrightarrow \left\{\begin{matrix} x\neq \frac{1}{2}\\ x\neq -3\end{matrix}\right.\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{1}{2}; -3\right\}\)
c)
ĐK: \(8x^3+1\neq 0\Leftrightarrow x^3\neq \frac{-1}{8}\Leftrightarrow x\neq \frac{-1}{2}\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{-1}{2}\right\}\)
d)
ĐK:
\(|x-2015|+1\neq 0\Leftrightarrow |x-2015|\neq -1\Leftrightarrow x\in\mathbb{R}\)
Vậy TXĐ \(D=\mathbb{R}\)
e)
ĐK: \(\left\{\begin{matrix} |x-1,2|\neq 0\\ 2x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1,2\\ x\neq 2,5\end{matrix}\right.\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{1,2; 2,5\right\}\)
f)
ĐK: \(x^2-4\neq 0\Leftrightarrow (x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{\pm 2\right\}\)
a,|x2−13x2−13| = 3232
b, 32−1232−12 ( 2x-1)=3434
c, |x-1|+2x=2
a)\(\left|\dfrac{x}{2}-\dfrac{1}{3}\right|=\dfrac{3}{2}\)
TH1
\(\dfrac{x}{2}-\dfrac{1}{3}=\dfrac{3}{2}\)
=>\(\dfrac{x}{2}=\dfrac{11}{6}\)
=>x=\(\dfrac{11.2}{6}\)
=>x=\(\dfrac{11}{3}\)
TH2
\(\dfrac{x}{2}-\dfrac{1}{2}=-\dfrac{3}{2}\)
=>\(\dfrac{x}{2}=-\dfrac{3}{2}+\dfrac{1}{2}\)
=>\(\dfrac{x}{2}=-1\)
=>x=-2
\(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5\)
\(\Rightarrow\dfrac{59-x}{41}+1+\dfrac{57-x}{43}+1+\dfrac{55-x}{45}+1+\dfrac{53-x}{47}+1+\dfrac{51-x}{49}+1=0\)\(\Rightarrow\dfrac{100-x}{41}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}+\dfrac{100-x}{49}=0\)
\(\Rightarrow\left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49}\right)=0\)
\(\Rightarrow100-x=0\Rightarrow x=100\)
Câu 1:
a: |x-1|+|x-5|=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
b: Đặt \(\dfrac{x}{3}=\dfrac{y}{2}=k\)
=>x=3k; y=2k
\(x^2+y^2=52\)
\(\Rightarrow9k^2+4k^2=52\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
=>x=6; y=4
Trường hợp 2: k=-2
=>x=-6; y=-4
c: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{2a-b}=\dfrac{bk}{2bk-b}=\dfrac{k}{2k-1}\)
\(\dfrac{c}{2c-d}=\dfrac{dk}{2dk-d}=\dfrac{k}{2k-1}\)
Do đó: \(\dfrac{a}{2a-b}=\dfrac{c}{2c-d}\)
câu a) mình chịu (dùng kiến thức lớp 12 chắc làm đc haha)
b) gt ⇒ \(\frac{1}{6}.6^{x+2}-6^x=6^{14}-6^{13}\)
⇒ \(6^{x+1}-6^x=6^{14}-6^{13}\)
⇒ \(6^x\left(6-1\right)=6^{13}\left(6-1\right)\)
⇒ \(x=13\)
c) gt ⇒ \(\frac{1}{2}.2^{x+4}-2^x=2^{13}-2^{10}\)
⇒ \(2^{x+3}-2^x=2^{13}-2^{10}\)
⇒ \(2^x\left(2^3-1\right)=2^{10}\left(2^3-1\right)\)
⇒ \(x=10\)
d) gt ⇒ \(\frac{1}{3}.3^{x+4}-4.3^x=3^{16}-4.3^{13}\)
⇒ \(3^{x+3}-4.3^x=3^{16}-4.3^{13}\)
⇒ \(3^x\left(3^3-4\right)=3^{13}\left(3^3-4\right)\)
⇒ \(x=13\)
Tìm x, y, z biết:
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và 2x + 3y + z = 17
Giải
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}\) và 2x + 3y + z = 17
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}=\dfrac{2x+3y+z}{4+9+4}=\dfrac{17}{17}=1\)
\(\dfrac{x}{2}=1\Rightarrow x=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3\)
\(\dfrac{z}{4}=1\Rightarrow z=4\)
Vậy...
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và (x - y)2 + (y - z)2 = 2
Giải
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{\left(x-y\right)^2+\left(y-z\right)^2}{\left(2-3\right)^2+\left(3-4\right)^2}=\dfrac{2}{2}=1\)
\(\dfrac{x}{2}=1\Rightarrow x=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3\)
\(\dfrac{z}{4}=1\Rightarrow z=4\)
Vậy...
\(\dfrac{72-x}{7}=\dfrac{x-4}{9}\)
\(\Rightarrow9\left(72-x\right)=7\left(x-4\right)\)
\(\Rightarrow648-9x=2x-28\)
\(\Rightarrow11x-28=648\)
\(\Rightarrow11x=676\Rightarrow x=\dfrac{676}{11}\)
\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
\(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)
\(\Rightarrow259-7x=3x+39\)
\(\Rightarrow10x+39=259\)
\(\Rightarrow10x=220\Rightarrow x=22\)
\(\dfrac{x+4}{20}=\dfrac{5}{x+4}\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow\left(x+4\right)^2=\pm10^2\)
\(\Rightarrow\left[{}\begin{matrix}x+4=10\Rightarrow x=6\\x+4=-10\Rightarrow x=-14\end{matrix}\right.\)
\(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x-2\right)\left(x+2\right)\)
\(\Rightarrow x\left(x+3\right)-1\left(x+3\right)=x\left(x+2\right)-2\left(x+2\right)\)
\(\Rightarrow x^2+3x-x-3=x^2+2x-2x-4\)
\(\Rightarrow x^2+2x-3=x^2-4\)
\(\Rightarrow2x-3=-4\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\dfrac{1}{2}\)