Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\cdot3\dfrac{1}{4}+\left(-\dfrac{7}{6}\right)\cdot x-1\dfrac{2}{3}=\dfrac{5}{12}\)
\(\Rightarrow\dfrac{3}{4}x-\dfrac{7}{6}x-\dfrac{2}{3}=\dfrac{5}{12}\)
\(\Leftrightarrow9x-14x-8=5\)
\(\Leftrightarrow-5x-8=5\)
\(\Leftrightarrow-5x=5+8\)
\(\Leftrightarrow-5x=13\)
\(\Rightarrow x=-\dfrac{13}{5}\)
Vậy \(x=-\dfrac{13}{5}\)
b) \(5\dfrac{8}{17}:x+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)
\(\Rightarrow5\dfrac{8}{17}:x+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\left(đk:x\ne0\right)\)
\(\Leftrightarrow\dfrac{93}{17}\cdot\dfrac{1}{x}+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{93}{17x}+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{93}{17x}+2x-\dfrac{3}{4}=-\dfrac{7}{4}\left(đk:2x-\dfrac{3}{4}\ge0\right)\\\dfrac{93}{17x}-\left(2x-\dfrac{3}{4}\right)=-\dfrac{7}{4}\left(đk:2x-\dfrac{3}{4}< 0\right)\end{matrix}\right.\)
đến đây bạn giải tiếp nhé
c) \(\left(x+\dfrac{1}{2}\right)\cdot\left(\dfrac{2}{3}-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{2}{3}-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0-\dfrac{1}{2}\\2x=0+\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{2}{3}:2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{1}{2};x_2=\dfrac{1}{3}\)
What? Lớp 10? Mí bài nỳ dễ mak! Trên lp cs hc mak k giải đc thì thui lun!
\(\left(x+5\right)\sqrt{2x^2+1}=x^2+x-5\left(đk:x\ge0\right)\)
\(< =>x\sqrt{2x^2+1}-0+5\sqrt{2x^2+1}-5=x\left(x+1\right)\)
\(< =>\frac{x^2\left(2x^2+1\right)}{x\sqrt{2x^2+1}}+\frac{25\left(2x^2+1\right)-25}{5\sqrt{2x^2+1}+5}=x\left(x+1\right)\)
\(< =>\frac{x\left(2x^2+1\right)}{\sqrt{2x^2+1}}+\frac{25.2x^2}{5\left(\sqrt{2x^2+1}+1\right)}-x\left(x+1\right)=0\)
\(< =>x\left[\frac{2x^2+1}{\sqrt{2x^2+1}}+\frac{10x}{\sqrt{2x^2+1}+1}-x-1\right]=0< =>x=0\)
đánh giá cái ngoặc to to bằng đk là được , hoặc có nghiệm nữa thì giải luôn
ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{x-2-2\sqrt{x-2}+1}+\sqrt{x-2-6\sqrt{x-2}+9}=-x^2+4x-2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-1\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}=-x^2+4x-2\)
\(\Leftrightarrow\left|\sqrt{x-2}-1\right|+\left|\sqrt{x-2}-3\right|=-x^2+4x-2\)
\(\Leftrightarrow\left|\sqrt{x-2}-1\right|+\left|3-\sqrt{x-2}\right|=2-\left(x-2\right)^2\)
Ta có: \(VP=2-\left(x-2\right)^2\le2\)
\(VT=\left|\sqrt{x-2}-1\right|+\left|3-\sqrt{x-2}\right|\ge\left|\sqrt{x-2}-1+3-\sqrt{x-2}\right|=2\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x-2}-1\ge0\\3-\sqrt{x-2}\ge0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\) Không tồn tại x thỏa mãn
Vậy pt vô nghiệm
Nếu x chắn => x2 \(⋮\) 4 mà 4x \(⋮\) 4
=> VT chia 4 dư 3
2015 chia 4 dư 1 => 20152018 chia 4 dư 1
2010 chia 4 dư 2 => 20102017 chia hết cho 4
=> VP chia 4 dư 1 => vô n0
Nếu x lẻ thì VT chia hết cho 4 VP ko chia hết => vô n0
Vậy pt vô n0
Đề có sai ko bạn ?
\(\left|\dfrac{1}{2}x\right|=3-2x\)(1)
Vì \(VT\ge0\Rightarrow3-2x\ge0\Leftrightarrow x\le\dfrac{3}{2}\)
\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=3-2x\\\dfrac{1}{2}x=-3+2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(Chon\right)\\x=2\left(Loai\right)\end{matrix}\right.\)
Vậy....