K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

Đề có sai ko bạn ?

19 tháng 2 2019

\(\left|\dfrac{1}{2}x\right|=3-2x\)(1)

\(VT\ge0\Rightarrow3-2x\ge0\Leftrightarrow x\le\dfrac{3}{2}\)

\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=3-2x\\\dfrac{1}{2}x=-3+2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(Chon\right)\\x=2\left(Loai\right)\end{matrix}\right.\)

Vậy....

4 tháng 6 2017

a) \(x\cdot3\dfrac{1}{4}+\left(-\dfrac{7}{6}\right)\cdot x-1\dfrac{2}{3}=\dfrac{5}{12}\)

\(\Rightarrow\dfrac{3}{4}x-\dfrac{7}{6}x-\dfrac{2}{3}=\dfrac{5}{12}\)

\(\Leftrightarrow9x-14x-8=5\)

\(\Leftrightarrow-5x-8=5\)

\(\Leftrightarrow-5x=5+8\)

\(\Leftrightarrow-5x=13\)

\(\Rightarrow x=-\dfrac{13}{5}\)

Vậy \(x=-\dfrac{13}{5}\)

b) \(5\dfrac{8}{17}:x+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)

\(\Rightarrow5\dfrac{8}{17}:x+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\left(đk:x\ne0\right)\)

\(\Leftrightarrow\dfrac{93}{17}\cdot\dfrac{1}{x}+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{93}{17x}+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{93}{17x}+2x-\dfrac{3}{4}=-\dfrac{7}{4}\left(đk:2x-\dfrac{3}{4}\ge0\right)\\\dfrac{93}{17x}-\left(2x-\dfrac{3}{4}\right)=-\dfrac{7}{4}\left(đk:2x-\dfrac{3}{4}< 0\right)\end{matrix}\right.\)

đến đây bạn giải tiếp nhé

c) \(\left(x+\dfrac{1}{2}\right)\cdot\left(\dfrac{2}{3}-2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{2}{3}-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0-\dfrac{1}{2}\\2x=0+\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{2}{3}:2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(x_1=-\dfrac{1}{2};x_2=\dfrac{1}{3}\)

13 tháng 7 2017

What? Lớp 10? Mí bài nỳ dễ mak! Trên lp cs hc mak k giải đc thì thui lun!bucminh

13 tháng 7 2017

tui mới lớp 7 mà

19 tháng 9 2020

\(\left(x+5\right)\sqrt{2x^2+1}=x^2+x-5\left(đk:x\ge0\right)\)

\(< =>x\sqrt{2x^2+1}-0+5\sqrt{2x^2+1}-5=x\left(x+1\right)\)

\(< =>\frac{x^2\left(2x^2+1\right)}{x\sqrt{2x^2+1}}+\frac{25\left(2x^2+1\right)-25}{5\sqrt{2x^2+1}+5}=x\left(x+1\right)\)

\(< =>\frac{x\left(2x^2+1\right)}{\sqrt{2x^2+1}}+\frac{25.2x^2}{5\left(\sqrt{2x^2+1}+1\right)}-x\left(x+1\right)=0\)

\(< =>x\left[\frac{2x^2+1}{\sqrt{2x^2+1}}+\frac{10x}{\sqrt{2x^2+1}+1}-x-1\right]=0< =>x=0\)

đánh giá cái ngoặc to to bằng đk là được , hoặc có nghiệm nữa thì giải luôn

NV
8 tháng 3 2020

ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{x-2-2\sqrt{x-2}+1}+\sqrt{x-2-6\sqrt{x-2}+9}=-x^2+4x-2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-1\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}=-x^2+4x-2\)

\(\Leftrightarrow\left|\sqrt{x-2}-1\right|+\left|\sqrt{x-2}-3\right|=-x^2+4x-2\)

\(\Leftrightarrow\left|\sqrt{x-2}-1\right|+\left|3-\sqrt{x-2}\right|=2-\left(x-2\right)^2\)

Ta có: \(VP=2-\left(x-2\right)^2\le2\)

\(VT=\left|\sqrt{x-2}-1\right|+\left|3-\sqrt{x-2}\right|\ge\left|\sqrt{x-2}-1+3-\sqrt{x-2}\right|=2\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\sqrt{x-2}-1\ge0\\3-\sqrt{x-2}\ge0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\) Không tồn tại x thỏa mãn

Vậy pt vô nghiệm

11 tháng 3 2020

tks b nha

11 tháng 11 2017

đề bài nhìn kiểu gì mà kinh khủng thế

11 tháng 11 2017

Nếu x chắn => x2 \(⋮\) 4 mà 4x \(⋮\) 4

=> VT chia 4 dư 3

2015 chia 4 dư 1 => 20152018 chia 4 dư 1

2010 chia 4 dư 2 => 20102017 chia hết cho 4

=> VP chia 4 dư 1 => vô n0

Nếu x lẻ thì VT chia hết cho 4 VP ko chia hết => vô n0

Vậy pt vô n0