Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}x-3=0\\x+1=0\end{array}\right.\)\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}x=3\\x=-1\end{array}\right.\)
a.
\(x^2-2x-3=0\)
\(x^2-2\times x+1^2-1^2-3=0\)
\(\left(x-1\right)^2-4=0\)
\(\left(x-1\right)^2=4\)
\(\left(x-1\right)^2=\left(\pm2\right)^2\)
\(x-1=\pm2\)
TH1:
x - 1 = 2
x = 2 + 1
x = 3
TH2:
x - 1 = -2
x = -2 + 1
x = -1
Vậy x = 3 hoặc x = -1
b.
\(2x^2+5x-3=0\)
\(2\times\left(x^2+2\times x\times\frac{5}{4}+\left(\frac{5}{4}\right)^2-\left(\frac{5}{4}\right)^2-\frac{3}{2}\right)=0\)
\(\left(x+\frac{5}{4}\right)^2-\frac{49}{16}=0\)
\(\left(x+\frac{5}{4}\right)^2=\frac{49}{16}\)
\(\left(x+\frac{5}{4}\right)^2=\left(\pm\frac{7}{4}\right)^2\)
\(x+\frac{5}{4}=\pm\frac{7}{4}\)
TH1:
x + 5/4 = 7/4
x = 7/4 - 5/4
x = 2/4
x = 1/2
TH2:
x + 5/4 = -7/4
x = -7/4 - 5/4
x = -12/4
x = -3
Vậy x = -3 hoặc x = 1/2
Chúc bạn học tốt ^^
a, \(2\left(x+5\right)-x^2-5x=0\)
\(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}\)
a) 5x( x - 1 ) = x - 1
<=> 5x2 - 5x = x - 1
<=> 5x2 - 5x - x + 1 = 0
<=> 5x2 - 6x + 1 = 0
<=> 5x2 - 5x - x + 1 = 0
<=> 5x( x - 1 ) - 1( x - 1 ) = 0
<=> ( x - 1 )( 5x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
b) 2( x + 5 ) - x2 - 5x = 0
<=> 2x + 10 - x2 - 5x = 0
<=> -x2 - 3x + 10 = 0
<=> -x2 - 5x + 2x + 10 = 0
<=> -x( x + 5 ) + 2( x + 5 ) = 0
<=> ( x + 5 )( 2 - x ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
c) x2 - 2x - 3 = 0
<=> x2 + x - 3x - 3 = 0
<=> x( x + 1 ) - 3( x + 1 ) = 0
<=> ( x + 1 )( x - 3 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
d) 2x2 + 5x - 3 = 0
<=> 2x2 - x + 6x - 3 = 0
,<=> x( 2x - 1 ) + 3( 2x - 1 ) = 0
<=> ( 2x - 1 )( x + 3 ) = 0
<=> \(\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)
a) 5x ( x - 1 ) = x - 1 <=> 5x2 - 5x - x + 1 = 0
<=> 5x2 - 6x + 1 = 0 <=> 5x2 - x - ( 5x - 1 ) = 0
<=> x ( 5x - 1 ) - ( 5x - 1 ) = 0 <=> ( x - 1 )( 5x - 1 ) = 0
<=> x = 1 hoặc x = 1/5
b) 2 ( x + 5 ) - x2 - 5x = 0 <=> 2 ( x + 5 ) - x ( x + 5 ) = 0
<=> ( 2 - x ) ( x + 5 ) = 0 <=> x = 2 hoặc x = -5
c) x2 - 2x - 3 = 0 <=> x2 + x - 3x - 3 = 0
<=> x ( x + 1 ) - 3 ( x + 1 ) = 0 <=> ( x - 3 ) ( x + 1 ) = 0
<=> x = 3 hoặc x = -1
d) 2x2 + 5x - 3 = 0
Ta có : delta = 52 - 4.2.3 = 25 - 24 = 1
Khi đó : x = -1 hoặc x = 3/2
1.a) 2x4-4x3+2x2
=2x2(x2-2x+1)
=2x2(x-1)2
b) 2x2-2xy+5x-5y
=2x(x-y)+5(x-y)
=(2x+5)(x-y)
2.
a) 4x(x-3)-x+3=0
=>4x(x-3)-(x-3)=0
=>(4x-1)(x-3)=0
=> 2 TH:
*4x-1=0 *x-3=0
=>4x=0+1 =>x=0+3
=>4x=1 =>x=3
=>x=1/4
vậy x=1/4 hoặc x=3
b) (2x-3)^2-(x+1)^2=0
=> (2x-3-x-1).(2x-3+x+1)=0
=>(x-4).(3x-2)=0
=> 2 TH
*x-4=0
=> x=0+4
=> x=4
*3x-2=0
=>3x=0-2
=>3x=-2
=>x=-2/3
vậy x=4 hoặc x=-2/3
a) \(x^3-2x=0\)
\(\Rightarrow x.\left(x^2-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt{2}\end{cases}}\)
b) \(x^3+2x=0\)
\(\Rightarrow x.\left(x^2+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2+2=0\end{cases}}\)
Mà x2 và 2 là một số chẵn nên tổng của chúng khác 0. Vậy x = 0.
b) \(ĐKXĐ:x\ne0\)
\(\left(5x^4-3x^3\right):2x^3=\frac{1}{2}\)
\(\Leftrightarrow x^3.\left(5x-2\right):2x^3=\frac{1}{2}\)
\(\Leftrightarrow\frac{5x-2}{2}=\frac{1}{2}\)\(\Leftrightarrow5x-2=1\)
\(\Leftrightarrow5x=3\)\(\Leftrightarrow x=\frac{3}{5}\)( thỏa mãn ĐKXĐ )
Vậy \(x=\frac{3}{5}\)
c) \(ĐKXĐ:x\ne2\)
\(\frac{x^4-2x^2-8}{x-2}=0\)\(\Rightarrow x^4-2x^2-8=0\)
\(\Leftrightarrow\left(x^4-4x^2\right)+\left(2x^2-8\right)=0\)
\(\Leftrightarrow x^2.\left(x^2-4\right)+2\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+2\right)=0\)
Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+2\ge2\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
So sánh với ĐKXĐ ta thấy: \(x=-2\)thỏa mãn
Vậy \(x=-2\)
a) \(x^2=2x+1\)
\(\Leftrightarrow x^2-2x-1=0\)
\(\Leftrightarrow x^2-2x+1-2=0\)
\(\Leftrightarrow\left(x-1\right)^2-2=0\)
\(\Leftrightarrow\left(x-1-\sqrt{2}\right)\left(x-1+\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{cases}}\)
b) ĐKXĐ : x khác 0
\(\frac{5x^4-3x^3}{2x^3}=\frac{1}{2}\)
\(\Leftrightarrow\frac{x^3\left(5x-3\right)}{2x^3}=\frac{1}{2}\)
\(\Leftrightarrow\frac{5x-3}{2}=\frac{1}{2}\)
\(\Leftrightarrow5x-3=1\Leftrightarrow x=\frac{4}{5}\)( thỏa mãn ĐKXĐ )
c) ĐKXĐ : x khác 2
\(\frac{x^4-2x^2-8}{x-2}=0\)
\(\Leftrightarrow x^4-2x^2-8=0\)
\(\Leftrightarrow x^4-4x^2+2x^2-8=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+2\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(tm\right)\\x=2\left(ktm\right)\end{cases}}\)
1)
a) \(x^3-5x^2+x-5=0\Rightarrow x^2.\left(x-5\right)+\left(x-5\right)\)
\(\Rightarrow\left(x^2+1\right).\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(sai\right)\\x=5\end{cases}}\)\(KL:x=5\)
b) \(x^4-2x^3+10x^2-20x=0\Rightarrow x^3.\left(x-2\right)+10x\left(x-2\right)\)
\(\Rightarrow\left(x-2\right).\left(x^3+10x\right)\Rightarrow\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x\left(x^2+10\right)=0\Rightarrow x=0\end{cases}}\)
Vì nếu x2 + 10 = 0 => x2 = -10 ( sai )
Vậy...
a) x2 - 2x - 3 = 0
=> x2 + x - 3x - 3 = 0
=> x.(x + 1) - 3.(x + 1) = 0
=> (x + 1).(x - 3) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)