Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : 2x2 + 3x = 0
<=> x(2x + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{2}\end{cases}}\)
Tìm x,y,z biết :
a, x/y=7/3 và 5x-2y=87
b, 20x=15y=12z và 2x+y-z= 5
c, x-1/2=y-2/3=z-3/4 và x+3y-2z= 49
\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{5x}{35}=\frac{2y}{6}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
\(\frac{x}{7}=3\Rightarrow x=21\)
\(\frac{y}{3}=3\Rightarrow y=9\)
vậy x=21, y=9
b) \(20x=15y=12z=\frac{x}{\frac{1}{20}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{12}}=\frac{2x}{\frac{1}{40}}\)
áp dụng t/c dãy tí số bằng nhau ta có:
\(\frac{x}{\frac{1}{20}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{12}}=\frac{2x}{\frac{1}{40}}=\frac{2x+y-z}{\frac{1}{40}+\frac{1}{15}-\frac{1}{12}}=\frac{5}{\frac{1}{120}}=600\)
đến đây tự tính =)
b: 4x^2-20x+25=(x-3)^2
=>(2x-5)^2=(x-3)^2
=>(2x-5)^2-(x-3)^2=0
=>(2x-5-x+3)(2x-5+x-3)=0
=>(3x-8)(x-2)=0
=>x=8/3 hoặc x=2
c: x+x^2-x^3-x^4=0
=>x(x+1)-x^3(x+1)=0
=>(x+1)(x-x^3)=0
=>(x^3-x)(x+1)=0
=>x(x-1)(x+1)^2=0
=>\(x\in\left\{0;1;-1\right\}\)
d: 2x^3+3x^2+2x+3=0
=>x^2(2x+3)+(2x+3)=0
=>(2x+3)(x^2+1)=0
=>2x+3=0
=>x=-3/2
a: =>x^2(5x-7)-3(5x-7)=0
=>(5x-7)(x^2-3)=0
=>\(x\in\left\{\dfrac{7}{5};\sqrt{3};-\sqrt{3}\right\}\)
\(E=5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x+105\)
\(=\left(5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x\right)+105\)
\(=5x\left(x^6+2x^5-4x^4-7x^3+4x^2-x+8\right)+105\)
Thay \(x^6+2x^5-4x^4-7x^3+4x^2-x+8=0\)vào đa thức ta được:
\(E=5x.0+105=105\)
Bài 1:
a) -6x + 3(7 + 2x)
= -6x + 21 + 6x
= (-6x + 6x) + 21
= 21
b) 15y - 5(6x + 3y)
= 15y - 30 - 15y
= (15y - 15y) - 30
= -30
c) x(2x + 1) - x2(x + 2) + (x3 - x + 3)
= 2x2 + x - x3 - 2x2 + x3 - x + 3
= (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
= 3
d) x(5x - 4)3x2(x - 1) ??? :V
Bài 2:
a) 3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = -10
=> x = -10
b) 3x2 - 3x(-2 + x) = 36
<=> 3x2 + 2x - 3x2 = 36
<=> 6x = 36
<=> x = 6
=> x = 5
c) 5x(12x + 7) - 3x(20x - 5) = -100
<=> 60x2 + 35x - 60x2 + 15x = -100
<=> 50x = -100
<=> x = -2
=> x = -2
\(5x\left(x-2\right)-3\left(x-1\right)=20x^2-15x\left(2x+1\right)-24\)
\(\Rightarrow5x^2-10x-3x+3=20x^2-30x^2-15x-24\)
\(\Rightarrow5x^2-13x+3=-10x^2-15x-24\)
\(\Rightarrow5x^2+10x^2-13x+15x+3+24=0\)
\(\Rightarrow15x^2+2x+27=0\)
Ta có:
\(\Delta=2^2-4\cdot15\cdot27==-1616< 0\)
Nên pt vô nghiệm
\(5x\left(x-2\right)-3\left(x-1\right)=20x^2-15x\left(2x+1\right)-24\\ \Leftrightarrow5x^2-10x-3x+3=20x^2-30x^2-15x-24\\ \Leftrightarrow5x^2-20x^2+30x^2-10x-3x+15x+3+24=0\\ \Leftrightarrow15x^2+2x+27=0\\ \Leftrightarrow15x^2-2.x.\sqrt{15}+\dfrac{2}{15}+\dfrac{403}{15}=0\\ \Leftrightarrow\left(\sqrt{15}x+\dfrac{\sqrt{30}}{15}\right)^2+\dfrac{403}{15}=0\left(Vô.lí\right)\\ Vậy:Không.có.x.thoả\)