Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{2}{5}+\frac{1}{5}.\left(\frac{3}{4}\right)\)
= \(\frac{2}{5}+\frac{3}{20}\)
= \(\frac{11}{20}\)
b) \(\frac{5}{12}.\left(-\frac{3}{4}\right)\) + \(\frac{7}{12}.\left(-\frac{3}{4}\right)\)
= \(\left(\frac{5}{12}+\frac{7}{12}\right).\left(-\frac{3}{4}\right)\)
= 1.\(\left(-\frac{3}{4}\right)\)
= \(-\frac{3}{4}\)
Còn câu c) đang nghĩ.
Bài 2:
a) \(\frac{5}{7}+\frac{2}{7}\)x = 1
1.x = 1
x = 1 : 1
x = 1
Vậy x = 1.
b) 0,2 + | x - 1, 3 = 1, 5|
0,2 + x = 1, 5 + 1, 3
0,2 + x = 2, 8
x = 2, 8 - 0, 2
x = 2, 6
Vậy x = 2, 6.
c) 2x + 5 = 37
2x = 37 - 5
2x = 32
2x = 25
=> x = 5
Vậy x = 5.
d) 2x + 2x + 1 = 48
2x . 1 + 2x . 21 = 48
2x . ( 1 + 2) = 48
2x . 3 = 48
2x = 48 : 3
2x = 16
2x = 24
=> x = 4
Vậy x = 4.
Chúc bạn học tốt!
làm bước trung gian giùm mình luôn nhé
thanks trước những bạn làm giùm nhé
mình đang cần gấp lắm sáng mai là mình cần ai đang on làm giùm mình nhé
thanks
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)
\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)
mà\(2x^2+2y^2-3z^2=-100\)
thay\(6k^2+8k^2-15k^2=-100\)
\(k^2\left(6+8-15\right)=-100\)
\(k^2.\left(-1\right)=-100\)
\(k^2=100\)
\(\Rightarrow k=\pm10\)
bạn thế vào nha
- Với \(y=0\)
\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)=1680=5.6.7.8\)
\(\Rightarrow2^x+1=5\Rightarrow2^x=4\Rightarrow x=2\)
- Với \(y>0\Rightarrow15^y=5^y.3^y⋮5\)
Do \(2^x\ne0\) \(\forall x\), nhân cả 2 vế với \(2^x\) ta được:
\(2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-15^y.2^x=1679.2^x\)
Ta có \(2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)\) là tích của 5 số tự nhiên liên tiếp
\(\Rightarrow2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\) \(\forall x\)
\(15^y⋮5\Rightarrow15^y.2^x⋮y\)
\(\Rightarrow VT\) chia hết cho 5
Mà \(2^x\) không chia hết cho 5; \(1679\) không chia hết cho 5
\(\Rightarrow VP\) không chia hết cho 5
\(\Rightarrow\) không tồn tại x, y thỏa mãn
Vậy pt đã cho có nghiệm duy nhất \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
a, \(\left|x+\frac{1}{3}\right|=0\Leftrightarrow x=-\frac{1}{3}\)
b, \(\left|\frac{5}{18}-x\right|-\frac{7}{24}=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{18}-x=\frac{7}{24}\\\frac{5}{18}-x=-\frac{7}{24}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{72}\\x=\frac{41}{72}\end{cases}}\)
c, \(\frac{2}{5}-\left|\frac{1}{2}-x\right|=6\Leftrightarrow\left|\frac{1}{2}-x\right|=-\frac{28}{5}\)vô lí
Vì \(\left|\frac{1}{2}-x\right|\ge0\forall x\)*luôn dương* Mà \(-\frac{28}{5}< 0\)
=> Ko có x thỏa mãn
\(|x+\frac{1}{3}|=0\)
\(< =>x+\frac{1}{3}=0< =>x=-\frac{1}{3}\)
\(|x+\frac{3}{4}|=\frac{1}{2}\)
\(< =>\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{cases}}\)
mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
suy ra: \(\frac{x}{3}=2\)=> \(x=6\)
\(\frac{y}{4}=2\)=> \(y=8\)
Vậy...
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
suy ra: \(\frac{x}{5}=10\)=> \(x=50\)
\(\frac{y}{3}=10\)=> \(y=30\)
Vậy...
a, ( 152 +và 2/4 - 148 và 3/8 ) : 0,2 = x : 0,3
=> 33/8 : 1/5 = x : 3/10
=> x : 3/10 = 165/8
=> x = 99/10
b, ( 85 và 7/30 - 83 và 5/18 ) : 2 và 2/3 = 0,01x : 4
=> 88/45 : 8/3 = 0,01x : 4
=> 0,01x : 4 = 11/15
=> 0,01x = 44/15
=> x = 880/3
c, x - 1/ x + 5 = 6/7
=> 7( x - 1 ) = 6( x + 5 )
=> 7x - 7 = 6x + 30
=> 7x - 6x = 7 + 30
=> x = 37
d, x2/6 = 24/25
=> x2. 25 = 6 . 24
=> x2.25 = 144
=> x2 = 144/25
=> x = ( 12/5)2 hoặc x = ( -12/5)
g, x - 3/ x + 5 = 5/7
=> 7( x - 3 ) = 5 ( x + 5 )
=> 7x - 21 = 5x + 25
=> 7x - 5x = 21 + 25
=> 2x = 46
=> x = 23