Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(3^{x-2}+3^x=810\)
\(\Leftrightarrow3^x\left(3^{-2}+1\right)=810\)
\(\Leftrightarrow3^x\cdot\frac{10}{9}=810\)
\(\Leftrightarrow3^x=729\)
\(\Leftrightarrow3^x=3^6\)
\(\Leftrightarrow x=6\)
b)402240223.(x2-1)=804480443
\(\Leftrightarrow x^2-1=80448044^3:40224022^3\)
\(\Leftrightarrow x^2-1=\left(\frac{80448044}{40224022}\right)^3\)
\(\Leftrightarrow x^2-1=2^3\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
\(3^{x+2}+3^{x+3}=810\)
\(\Rightarrow6^{2x+5}=810\)
\(\Rightarrow2x+5=810:6\)
\(2x+5=135\)
\(\Rightarrow2x=135-5\)
\(2x=130\)
\(x=130:2\)
\(x=65\)
ủng hộ
đề :
\(3^x.3^2+3^x.3^3=810\)
\(3^x\left(3^2+3^3\right)=810\)
...?...
lúc khác mình
làm cho neh sbn
bây giờ mình
bận lắm
3x + 3x - 2 = 810
3x(1 + 32) = 820
3x(1 + 9) = 810
3x . 10 = 810
3x = 810 : 10
3x = 81
3x = 34
x = 4
3x + 3x - 2 = 810
3x(1 + 32 ) = 810
3x ( 1 + 9 ) = 810
3x.10 = 810
3x = 810 : 10
3x = 81
3x = 34
x = 4
Vậy x = 4
1.
1+2+3+...+99+100
=[(100-1):1+1]x[(100+1):2]
=100x50,5
=5050
2.
a, x2017=x
=> x=1 hoặc x=-1
b, 2x+2=250:8
=> 2x+2=250:23
=> 2x+2=247
=> x+2=47
=> x= 45
c, 3x+3x+2=810
=> 3x+3x+2=34+36
=> x=4
chúc bạn học tốt k mình nha .
Ta có: 3x+2+3x=810
=> 3x.32+3x=810
=> 3x.(32+1)=810
=> 3x=810:10
=> 3x=81
=> 3x=34
=> x=4
b) \(3.2^{x+1}=12\)
\(2^{x+1}=12:3\)
\(2^{x+1}=4\)
\(2^{x+1}=2^2\)
\(x+1=2\)
\(x=2-1\)
\(x=1\)
Vậy \(x=1\)
c) \(2^{x-1}=2^3+2^4-2^3\)
\(2^{x-1}=8+16-8\)
\(2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(x-1=4\)
\(x=5\)
Vậy \(x=5\)
d) \(x^{50}=x\)
\(x^{50}-x=0\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\)
\(b.3.2^{x+1}=12\\ \Rightarrow2^{x+1}=4\\ \Rightarrow2^{x+1}=2^2\\ \Rightarrow x=1\\ \)
c) \(2^{x-1}=2^3-2^3+2^4\\ \Rightarrow2^{x-1}=0+16\\ \Rightarrow2^{x-1}=16\\ \Rightarrow2^{x-1}=2^4\\ \Rightarrow x-1=4\\ \Rightarrow x=5\)
d) \(x^{50}=x\\ \Rightarrow x=0;1\)
e) \(2\left(2x-1\right)^4=32\\ \Rightarrow\left(2x-1\right)^4=16\\ \Rightarrow\left(2x-1\right)^4=2^4\\ \Rightarrow2x-1=2\\ \Rightarrow2x=3\\ \Rightarrow x=\frac{3}{2}\)
g) Bí
\(3^x+3^{x+2}=810\)
=> \(3^x\cdot1+3^x\cdot3^2=810\)
=> \(3^x\cdot\left(1+3^2\right)=810\)
=> \(3^x\cdot10=810\)
=> \(3^x=810:10=81\)
=> \(x=4\)