Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a , (x-3).(x^2+3x+9)+x(x+2).(2-x)=1 }\)
=(x3-33)+x(4-x2)=1
=x3-27+4x-x3=1
4x-27=1
4x=28
x=7
\(\text{b, (x+1)^3-(x-1)^3-6.(x-1)^2=-10}\)
=-0,5
a: Ta có: \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x+2\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-2x^2+x+2x^2-4x+2\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x-2-3x^2+9=5\)
\(\Leftrightarrow6x=-3\)
hay \(x=-\dfrac{1}{2}\)
b: Ta có: \(\left(x+1\right)^3+\left(x-1\right)^3=\left(x+2\right)^3+\left(x-2\right)^3\)
\(\Leftrightarrow x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)
\(\Leftrightarrow2x^3+6x=2x^3+24x\)
\(\Leftrightarrow x=0\)
c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-1=-10\)
\(\Leftrightarrow12x=-11\)
hay \(x=-\dfrac{11}{12}\)
a) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Leftrightarrow x^3-3^3+x\left(4-x^2\right)=1\)
\(\Leftrightarrow x^3-27+4x-x^3=1\)
\(\Leftrightarrow-27+4x=1\)
\(\Leftrightarrow4x=1+27\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=28:4\)
\(\Leftrightarrow x=7\)
Vậy phương trình có 1 nghiệm duy nhất là 7
b) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
Biến đổi vế trái của phương trình
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=4\left(3x-1\right)\)
Phương trình thu được sau khi biến đổi
\(4\left(3x-1\right)=-2.5\)
\(\Leftrightarrow12x-4=-10\)
\(\Leftrightarrow12x=-6\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy nghiệm duy nhất của phương trình là \(\frac{-1}{2}\)
a) \(\left(x+1\right)^3-\left(x-1\right)^3-6\cdot\left(x-1\right)^2=10\)
\(\Rightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\cdot\left(x^2-2x+1\right)=10\)
\(\Rightarrow6x^2+2-6x^2+12x-6=10\)
\(\Rightarrow12x-4=10\)
\(\Rightarrow12x=14\)
\(\Rightarrow x=\dfrac{7}{6}\)
b) \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=42\)
\(\Rightarrow x\left(x^2-25\right)-\left(x^3+8\right)=42\)
\(\Rightarrow x^3-25x-x^3-8=42\)
\(\Rightarrow-25x-8=42\)
\(\Rightarrow-25x=50\)
\(\Rightarrow x=\dfrac{50}{-25}=-2\)
c) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Rightarrow x^3-6x^2+12x-8-\left(x^3-27\right)+6\left(x^2+2x+1\right)=49\)
\(\Rightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Rightarrow24x+25=49\)
\(\Rightarrow24x=24\)
\(\Rightarrow x=\dfrac{24}{24}=1\)
- 2(x+5)(x-5)-(x+2)(2x-3)+x(x^2-8)=(x+1)(x^2-x+1)
<=> 2(x^2-25) - 2x^2+3x-4x+6 + x^3-8x = x^3+1
=>2x^2-50 - 2x^2 -9x+6+x^3-x^3-1 = 0
<=>-9x - 45 =0
<=>-9x=45
<=>x=-5
Còn phần b và c bạn cứ khai triển ra,mình phải đi học nên không có thời gian giải cho bạn
a)\(\left(3x+2\right)\left(2x-3\right)=6x^2-5x-6\)
b) viết lại đề nhin (dùng f(x) viết mới rõ ra dduocj) ko phải dùng {[(...)]} cho chuẩn vào
c) \(\left(x-2\right)^3-x^2.\left(x-6\right)=x^3-3.x.2\left(x-2\right)-8-x^3+6x^2\)
\(=x^3-6x^2+12x-8-x^3+6x^2=12x-8=4\Rightarrow x=1\)
\(\Leftrightarrow6\left(x^2-x-6\right)-3\left(x^2-4x+4\right)-3\left(x^2-1\right)=1\)
\(\Leftrightarrow6x^2-6x-36-3x^2+12x-12-3x^2+3=1\)
\(\Leftrightarrow6x=46\)
hay x=23/3